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Abstract

Weighting and trimming are popular methods for addressing positivity violations
in causal inference. While well-studied with single-timepoint data, standard methods
do not easily generalize to non-baseline covariates in longitudinal data. Consequently,
these effects remain susceptible to positivity violations at subsequent timepoints. In
this paper, we extend weighting and trimming to longitudinal data via dynamic stochas-
tic interventions. We introduce “flip” interventions, which maintain the treatment sta-
tus of subjects who would have received the target treatment, and flip others’ treatment
to the target with probability equal to their weight (e.g., overlap weight, trimming in-
dicator). With single-timepoint data, we show that a large class of weighted average
treatment effects are equivalent to “interventional” flip effects, which are the difference
in mean potential outcomes under a pair of flip interventions standardized by the mean
difference in number of treated units. Thus, in single-timepoint data, weighted effects
can be ascribed a novel policy interpretation via flip interventions. With longitudinal
data, flip interventions provide interpretable weighting or trimming on non-baseline
covariates. Crucially, flip interventions are policy-relevant since they could be im-
plemented in practice. By contrast, we show that other approaches for weighting or
trimming on non-baseline covariates do not retain this property. We derive efficient
estimators based on efficient influence functions when the weight is a smooth function
of the propensity score. We construct multiply robust-style and sequentially doubly
robust-style estimators that achieve root-n consistency and asymptotic normality under
nonparametric conditions.
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1 Introduction
There is a large and growing literature in causal inference for estimating treatment ef-
fects from observational data under violations of the positivity assumption. For binary
treatments, positivity requires subjects in every covariate stratum to have non-zero proba-
bility of receiving both treatment and control [Hernán and Robins, 2020]. In longitudinal
settings, positivity requires non-zero probability for every treatment regime under con-
sideration, which can become increasingly difficult to satisfy with more timepoints as the
number of treatment regimes increases exponentially. Full positivity violations (zero prob-
ability of certain regimes) render causal effects unidentifiable, while “practical” violations
(near-zero probability of certain regimes) inflate variance estimates. Both hamper mean-
ingful scientific conclusions from data [Kang and Schafer, 2007, Moore et al., 2012, Petersen
et al., 2012].

Several approaches have been developed to define effects robust to positivity violations.
We focus on weighting/trimming and dynamic stochastic interventions. In single-timepoint
data, weighted average treatment effects (WATEs) take the form

E
[
E{Y (1)− Y (0) | X}f(X)

E{f(X)}

]
where Y (1) and Y (0) are potential outcomes, X are covariates, and f(X) is a weight,
which is typically based on the propensity score π(X) := P(A = 1 | X). Examples include
overlap weights [Li et al., 2018], entropy weights [Hainmueller, 2012], and trimmed or
smooth trimmed effects [Crump et al., 2009, Yang and Ding, 2018]. WATEs can also
be defined implicitly post hoc by estimating weights f(X) to directly maximize covariate
balance between treatment and control groups and then estimating the identified analog
of the WATE in the display above [Cohn et al., 2023].

Weighting and trimming are well-studied for single-timepoint data, with extensions
beyond binary treatment (e.g., Branson et al. [2023], Li and Li [2019]), but their extension
to longitudinal settings remains challenging. Current approaches typically trim using only
baseline covariates [Jensen et al., 2024, Petersen et al., 2012], leaving them vulnerable
to positivity violations from non-baseline covariates. While some longitudinal weighting
methods exist (e.g, Zeng et al. [2023]), the counterfactual estimands they target remains
unclear.

Meanwhile, dynamic stochastic interventions offer an alternative approach by shifting
treatment probabilities and adapting to positivity violations at each timepoint. Pioneered
by Robins et al. [2004] and Stock [1989], these interventions have evolved through various
formulations including modified treatment policies (MTPs) [Díaz and van der Laan, 2012,
Haneuse and Rotnitzky, 2013], threshold interventions [Taubman et al., 2009], incremental
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propensity score interventions [Kennedy, 2019], and recent extensions to complex settings
[Díaz et al., 2023, McClean et al., 2024b, Schindl et al., 2024, Stensrud et al., 2024]. The
natural applicability of dynamic stochastic interventions to longitudinal data has made
them increasingly popular.

1.1 Structure of the paper and our contributions

Methods for weighting/trimming and dynamic stochastic interventions have developed
largely in parallel. In Section 2, we demonstrate that WATEs correspond to differences in
potential outcomes under pairs of “flip” interventions. Each pair contains one intervention
targeting treatment and one targeting control. If a subject would have taken the target
treatment, the flip intervention does not intervene; otherwise, it flips the subject to the
target treatment with probability equal to the weight f(X). We show that WATEs are
interventional effects. They are the average effect of the flip intervention targeting treat-
ment compared to the flip intervention targeting control, per unit of additional treatment
[Zhou and Opacic, 2022]. This connection may be of independent interest because it yields
a direct policy interpretation for a large class of WATEs, including those that balance
covariates directly and define the WATE post hoc.

Building on this insight, Section 3 introduces our notation for longitudinal data, while
Section 4 extends flip interventions to longitudinal data. These interventions flip subjects
toward a target treatment regimen using weights/flipping probabilities constructed from
non-baseline covariates. Crucially, they remain identifiable even under positivity violations
at all timepoints and are single-world interventions, relying only on data observable under
the intervention itself, and therefore are policy-relevant because they could be implemented
in practice [Richardson and Robins, 2013]. We define longitudinal interventional flip effects,
which capture the mean difference in potential outcomes under two flip interventions, stan-
dardized by the average change in the number of treatments per timepoint. In Section 4.2,
we investigate the properties of longitudinal interventional flip effects and outline issues
with alternative estimands one might consider. Crucially, we show that simple extensions
of weighting and trimming to longitudinal data do not correspond to interventions that
could be implemented in practice, justifying our focus on flip interventions.

Section 5 develops efficient estimators for flip effects when the flipping probability is
a smooth function of the propensity score. We present multiply robust and sequentially
doubly robust estimators based on efficient influence functions that achieve parametric con-
vergence rates under nonparametric conditions. We establish two new results: (1) tighter
bounds on the bias of multiply robust estimators using the minimum of two error decom-
positions, and (2) the first sequentially doubly robust guarantee for a dynamic stochastic
intervention that depends on unknown weights. For single-timepoint data, this result may
be of independent interest because it provides a doubly robust-style estimator for a large
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class of WATEs. In future work, we will illustrate our methods in R with simulations and
data analyses.

1.2 Mathematical notation

For a function f(Z), we use ‖f‖ =
√∫

f(z)2dP(z) to denote the L2(P) norm, P(f) =∫
Z f(z)dP(z) to denote the average with respect to the underlying distribution P, and
Pn(f) =

1
n

∑n
i=1 f(Zi) to denote the empirical average with respect to n observations. In

a standard abuse of notation, when A is an event we let P(A) denote the probability of A.
We also denote expectation and variance with respect to the underlying distribution by E
and V, respectively. We use a∧ b for minimum and a∨ b for maximum, and a . b to mean
a ≤ Cb for some constant C. We use  to denote convergence in distribution, and p→ for
convergence in probability. Additionally, we use oP(·) to denote convergence in probability
to zero, i.e., if Xn is a sequence of random variables then Xn = oP(rn) implies

∣∣∣Xn
rn

∣∣∣ p→ 0.

2 Single-timepoint flip interventions and weighted average
treatment effects

We assume data {(Xi, Ai, Yi)}ni=1
iid∼ P where X ∈ Rd are covariates, A ∈ {0, 1} is a bi-

nary treatment, and Y ∈ R is an outcome. Moreover, we assume that the observed data
corresponds to complete data {(Xi, Ai, Yi(0), Yi(1)}ni=1

iid∼ Pc where Y (a) is the potential
outcome under treatment a. We let Y (D) denote the potential outcome under treatment
decision D, where D is a random variable that can depend on the treatment A and covari-
ates X. Finally, we let π(X) = P(A = 1 | X) denote the propensity score.

When positivity is violated, a common estimand of interest is the weighted average
treatment effect (WATE), which we denote as

E
[
E{Y (1)− Y (0) | X}f(X)

E{f(X)}

]
. (1)

Our main result in this section shows that a large class of WATEs can be defined via flip
interventions. First, we define a pair of flip interventions using the weight function f(X).
Then, we define an interventional flip effect based on this pair. And finally, we establish
that this interventional flip effect is exactly the WATE in (1).

Definition 1 (Single-timepoint flip interventions). Suppose access to a weight function
f(X) : Rd → [0, 1], which maps from the covariate information to [0, 1]. Define a pair of
flip interventions, one for each a ∈ {0, 1}, as

Df (a) = 1(A = a)A+ 1(A 6= a)
[
a1{V ≤ f(X)}+A1{V > f(X)}

]
where V ∼ Unif(0, 1). In words:
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• if the treatment, A, equals the target treatment a, the flip intervention does nothing;

• otherwise, it flips the subject to the target treatment with probability f(X).

Remark 1. In Definition 1, we introduce an auxiliary random variable V . This is a standard
device in the literature on stochastic interventions, and captures the idea of randomly
reassigning treatment according to a Bernoulli distribution with a modified probability
[Díaz et al., 2023].
Next, we define an interventional flip effect based on a pair of flip interventions.

Definition 2 (Interventional flip effect). For a pair of flip interventions {Df (0), Df (1)}
from Definition 1, we define the interventional flip effect as

ψf =
E
[
Y {Df (1)} − Y {Df (0)}

]
E{Df (1)−Df (0)}

. (2)

This is the average effect on potential outcomes of Df (1) compared to Df (0) per unit of
additional treatment.

We define ψf as an interventional effect, which standardizes the mean difference in
potential outcomes by the mean difference in the number of treated units. Therefore, ψf

captures the notion of the treatment effect per unit treated. This type of effect is useful
for understanding the effectiveness of one policy versus another while accounting for how
many subjects are affected by the change in policy. It has been studied previously in the
literature; see, e.g., Zhou and Opacic [2022] and references therein. Finally, we establish
the interventional flip effect in (2) is exactly the WATE in (1).

Proposition 1 (Interventional flip effects are WATEs). Let ψf denote an interventional
flip effect from Definition 2. Suppose Y (a) ⊥⊥ A | X for a ∈ {0, 1}. Then,

ψf = E
[
E{Y (1)− Y (0) | X}f(X)

E{f(X)}

]
.

Proposition 1 establishes that interventional flip effects are equal to weighted average
treatment effects. While we leverage this result to extend weighting and trimming to longi-
tudinal data, this equivalence is itself be of independent interest. Crucially, Proposition 1
demonstrates that any WATE with weights bounded between zero and one corresponds to
a contrast in specific interventions—a connection that, to our knowledge, has not been es-
tablished previously. Table 1 illustrates several important examples, including the average
treatment effect on the treated (ATT) or control (ATC), the average treatment effect on
the overlap population (ATO), and the trimmed average treatment effect.1 Furthermore,

1Table 1 is adapted from the helpful tutorial on weighting, here: https://www2.stat.duke.edu/~fl35/
OW/ICHPS2023.pdf
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this framework also allows researchers to retrospectively define the implicit estimand un-
derlying any weighting estimator that directly balances covariates and constrains weights
to lie within the interval [0, 1]. For instance, if weights are constructed from a separate
sample and subsequently applied to estimate a WATE in a new sample conditional on these
estimated weights, the resulting estimand is equivalent to the interventional flip effect ψ

f̂
,

where the estimated weighting function f̂ is treated as fixed.
Remark 2. The flip intervention in Definition 1 depends on the observed treatment. As
a result, Proposition 1 requires exchangeability, despite not being an identification result.
This requirement can be relaxed by defining alternative flip interventions that do not
depend on the observed treatment:

Df (a) = 1 {V ≤ 1(a = 1)f(X) + {1− f(X)}π(X)} .

With such an intervention, Proposition 1 would hold without exchangeability. However,
one loses the interpretation of Df (a) as a “flip” intervention.

Estimand; ψf Weight/flipping probability; f(X)

ATE 1
ATT π(X)
ATC 1− π(X)
ATO π(X)(1− π(X))
Trimmed ATE 1{ε ≤ π(X) ≤ 1− ε} for ε ≥ 0
Smooth trimmed ATE S{π(X); ε} where S(x; ε) approximates 1(ε ≤ x ≤ 1− ε)
Matching-weighted ATE π(X) ∧ 1− π(X)
Direct covariate balancing Varies and is data-dependent; derived to directly balance

covariates

Table 1: Common weighted average treatment effect estimands and weights/flipping prob-
abilities f(X).

3 Setup and background for longitudinal flip interventions
As in the single-timepoint case, we assume n observations drawn iid from some distribution
P in a space of distributions P; i.e., we observe data {Zi}ni=1

iid∼ P ∈ P. We assume each
observation consists of longitudinal data over T timepoints, so that

Z = (X1, A1, X2, A2, . . . , XT , AT , Y ),

where Xt ∈ Rd are time-varying covariates (X1 are baseline covariates), At ∈ {0, 1} is
a time-varying binary treatment, and Y ∈ R is the ultimate outcome of interest. For a
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time-varying random variable Ot, let Ot = (O1, . . . , Ot) denote its history up to time t and
Ot = (Ot, . . . , OT ) denote its future from time t. Let Ht = (Xt, At−1) denote covariate and
treatment history up until treatment in timepoint t.

We formalize the definition of causal effects using a nonparametric structural equa-
tion model (NPSEM) [Pearl, 2009]. We assume the existence of deterministic functions
{fX,t, fA,t}Tt=1 and fY such that

Xt = fX,t(At−1,Ht−1, UX,t),

At = fA,t(Ht, UA,t), and
Y = fY (AT ,HT , UY ).

Here,
{{
UX,t, UA,t : t ∈ {1, . . . , T}

}
, UY

}
is a vector of exogenous variables. Subsequently,

we’ll define restrictions on their joint distribution that facilitate identification of causal
effects. We will define the effects in terms of hypothetical interventions in which equation
At = fA,t(Ht, UA,t) is removed from the structural model and the exposure is assigned
as a new random variable Dt (which could be deterministic). An intervention that sets
exposures up to time t − 1 to Dt−1 ≡ {D1, . . . , Dt−1} generates counterfactual variables
Xt(Dt−1) = fX,t

{
Dt−1,Ht−1(Dt−2), UX,t

}
and At(Dt−1) = fA,t

{
Ht(Dt−1), UA,t

}
, where

the counterfactual history is defined recursively as Ht(Dt−1) =
{
Dt−1, Xt(Dt−1)

}
and

A1(D0) = A1 and X1(D0) = X1. The variable At(Dt−1) is called the natural value of
treatment [Richardson and Robins, 2013, Young et al., 2014], and represents the possibly
counterfactual value of treatment that would have been observed at time t under an inter-
vention carried out up to time t− 1 but discontinued thereafter. An intervention in which
all treatment variables up to t = T are intervened on generates a counterfactual outcome
Y
(
DT

)
= fY

{
DT ,HT (DT−1), UY

}
.

3.1 Causal assumptions

The NPSEM implicitly contains the consistency assumption because one subject’s infor-
mation does not depend on another’s. This assumption would be violated if there were
interference between subjects [Tchetgen Tchetgen and VanderWeele, 2012]. We consider
two exchangeability assumptions on the exogeneous variables.
Assumption 1 (Standard sequential randomization). UA,t ⊥⊥

{
UX,t+1, UY

}
| Ht for all

t ≤ T .
Assumption 2 (Strong sequential randomization). UA,t ⊥⊥

{
UX,t+1, UA,t+1, UY

}
| Ht for all

t ≤ T .
Assumption 1 is standard for the identification of effects under dynamic stochastic

interventions [Díaz et al., 2023]. It is satisfied if the common causes of the treatment At

and future covariates are measured. Assumption 2 is stronger. It is satisfied if common
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causes of treatment At and future covariates and treatments are measured. This assumption
is similar to that required by Richardson and Robins [2013] (cf. Theorem 31), and allows
identification of effects under certain interventions that depend on the natural value of
treatment [Young et al., 2014]. Finally, note that we do not immediately require the typical
positivity assumption, which says that time-varying propensity scores are bounded away
from zero and one (0 < P(At = 1 | Ht) < 1), because we will construct interventions which
adapt to positivity violations. Some flip interventions will require a version of positivity,
and we will introduce the assumption when it is needed.

4 Longitudinal weighting and trimming with flip interven-
tions

In this section, we extend flip interventions and interventional flip effects from Section 2
to longitudinal data. We define longitudinal flip interventions that perform weighting or
trimming on non-baseline covariates, and then develop longitudinal analogs to interven-
tional flip effects. Depending on the weighting function, these effects remain identifiable
even with arbitrary positivity violations. Importantly, the flip interventions we consider
are “single-world”, relying only on information observable under the series of interventions,
which preserves their policy relevance for practical implementation.

To conclude the section, we investigate properties of longitudinal intervention flip effects
and outline limitations of alternative estimands. Due to their single-world nature, longi-
tudinal interventional flip effects can be driven both by differences in potential outcomes
under different regimes and by the impact of earlier interventions on subsequent covariates
and natural treatment values. While one might prefer estimands that isolate mechanistic
differences in potential outcomes, we demonstrate that such estimands would require cross-
world and future information to guide earlier interventions, creating significant practical
and interpretational challenges.

4.1 Single-world flip interventions

We now propose flip interventions that extend the interventions in Section 2 to longitudinal
data. We begin by defining flip interventions targeting a specific longitudinal regime and
then longitudinal interventional effects contrasting two flip interventions. We establish
conditions under which the resulting effects remain identifiable without standard positivity
assumptions.

Definition 3 (Single-world flip interventions). Suppose access to some function f ct :
{0, 1} × Ht → [0, 1], which maps a target treatment and covariate history to [0, 1]. Let
aT = {a1, . . . , aT } ∈ {0, 1}T be the target regime. A flip intervention at time t targeting
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at is

Dt =

{
At(Dt−1), if At(Dt−1) = at,

at1
[
Vt ≤ f ct {at;Ht(Dt−1)}

]
+At(Dt−1)1

[
Vt > f ct {at;Ht(Dt−1)}

]
, otherwise,

where V1, . . . , VT are iid Unif(0, 1) random variables with {V1, . . . , VT } ⊥⊥ Z.

In words, at time t:

• if the natural value of treatment is already at, the flip intervention does nothing;

• otherwise, it flips the subject to the target treatment with probability f ct {at;Ht(Dt−1)}.

Importantly, the intervention is “single-world,” meaning the decision at time t depends
only on information observable under interventions performed up to that point (Dt−1).
A related nuance is that the weighting function can be counterfactual because it can
depend on the natural value of treatment. For example, if f ct {at;Ht(Dt−1)} is a trim-
ming indicator, it will be a trimming indicator using the “natural” propensity score, i.e.,
f ct {at;Ht(Dt−1)} = 1

[
ε < P{At(Dt−1) = at | Ht(Dt−1)} < 1 − ε

]
. Therefore, both the

function and its argument are counterfactual, but would be observed under the series of
interventions Dt−1. The superscript “c” emphasizes the “counterfactual” nature of f ct (·).
Table 2 gives additional examples. Next, we define a longitudinal interventional flip effect.

Definition 4 (Longitudinal interventional flip effect). Let DT and D
′
T denote two flip

interventions targeting aT and a′T , respectively. Define the longitudinal interventional flip
effect from these two interventions as

E
{
Y (DT )− Y (D

′
T )
}

1
T

∑T
t=1 |E (Dt −D′

t) |
. (3)

The effect defined in (3) generalizes the single-timepoint interventional flip effect, char-
acterizing the average change in potential outcomes standardized by the average absolute
per-timepoint change in the number of treatments. While the numerator matches the single-
timepoint definition, multiple options exist for the denominator. We adopt a per-timepoint
absolute difference approach, allowing for flexible policy contrasts where E(Dt −D′

t) may
change signs across timepoints. In scenarios with monotonic interventions—where, without
loss of generality, Dt ≥ D′

t almost surely for all t ∈ {1, . . . , T}—the absolute value function
becomes unnecessary, and one retains the same interpretation as in the single-timepoint
case.
Remark 3. There are other options for defining the denominator, each corresponding to
different measures of distance between two longitudinal treatment distributions. We leave
a full investigation to future work, but briefly note that other options include:
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Type of weighting Weight/flipping probability f ct {at;Ht(Dt−1)}

No weighting 1

Weighting to subjects that
can take target treatment

P{At(Dt−1) = at | Ht(Dt−1)}

Weighting to subjects that
can take non-target treatment

1− P{At(Dt−1) = at | Ht(Dt−1)}

Overlap weighting P{At(Dt−1) = at | Ht(Dt−1)}
[
1 − P{At(Dt−1) = at |

Ht(Dt−1)}
]

Trimming 1{ε ≤ P{At(Dt−1) = at | Ht(Dt−1)} ≤ 1− ε} for ε ≥ 0

Smooth trimming S
[
P{At(Dt−1) = at | Ht(Dt−1)}; ε

]
, where S(x; ε) approxi-

mates 1(ε ≤ x ≤ 1− ε)

Matching-style weighting P{At(Dt−1) = at | Ht(Dt−1)} ∧
(
1 − P{At(Dt−1) = at |

Ht(Dt−1)}
)

Direct covariate balancing Varies and is data-dependent; these must be derived to di-
rectly balance counterfactual covariates

Table 2: Extending weights/flipping probabilities to longitudinal data.

• Average per-timepoint probability of switching treatment assignment: 1
T

∑T
t=1 P(Dt 6=

D′
t). This is an intuitive notion of the distance between the two treatment distri-

butions, but one should note that it would not yield interventional flip effects in
single-timepoint data. Nonetheless, it is a useful alternative to our proposal in (3).
Moreover, with binary treatment, note also that P(Dt 6= D′

t) = E(Dt){1− E(D′
t)}+

{1 − E(Dt)}E(D′
t). Therefore, one could use this switching distance instead of the

denominator in (3) and our subsequent results for efficient estimation would apply.

• Joint distributional distances: To incorporate dependence across timepoints explic-
itly, one might use distances between joint distributions, such as f-divergences or
optimal transport metrics, comparing the distributions P and P ′ of D1, . . . , DT and
D′

1, . . . , D
′
T , respectively. Depending on the choice of distance, estimation may be

more complex.

The next result establishes conditions under which flip interventions correspond to
identifiable functionals, even under arbitrary positivity violations. We focus on the mean
potential outcome under one intervention, E{Y (DT )}, and the average treatment at an
arbitrary timepoint, E(Dt).
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Theorem 1 (Longitudinal identification with flip interventions). Let DT = {D1, D2, . . . , DT }
denote flip interventions as in Definition 3 targeting treatment regime aT . Moreover, let
ft(at;Ht) denote the identified analog to f ct , which replaces P{At(Dt−1) = at | Ht(Dt−1)}
by P(At = at | Ht) in Table 2. Then, suppose the NPSEM and Assumption 2 hold and f ct
and ft are constructed such that

P(At = at | Ht) = 0 =⇒ ft(at;Ht) = 0

or positivity holds such that P
{
P(At = at | Ht) = 0

}
= 0. Then,

E
{
Y (DT )

}
=

∑
bT∈{0,1}T

∫
XT

E
(
Y | AT = bT , XT = xT

) T∏
t=1

Qt

(
bt | bt−1, xt

)
dP(xt | bt−1, xt−1)

= E

[
Y

T∏
t=1

Qt(At | Ht)

P(At | Ht)

]
(4)

and

E
(
Dt) =

∑
bt−1∈{0,1}t−1

∫
X t

Qt(1 | bt−1, xt)dP(xt | bt−1, xt−1) ·
t−1∏
s=1

Qs(bs | bs−1, xs)dP(xs | bs−1, xs−1)

= E

[
Qt(At = 1 | Ht)

t−1∏
s=1

Qs(As | Hs)

P(As | Hs)

]
(5)

where the probability of receiving the target treatment at time t is

Qt(at | ht) = P(At = a | ht) + ft(at;ht){1− P(At = a | ht)}.

Theorem 1 establishes that mean potential outcomes under flip interventions are iden-
tifiable under only strong sequential randomization and consistency. We provide g-formula
identification [Robins, 1986] and inverse weighting identification in (4). We also derive a
result for the average number of treatments, in (5). The result requires that the identified
analog of the weighting function is zero when the observed propensity score for the target
treatment is zero. This can be enforced by construction. For example, the overlap weights,
trimming and smooth trimming weights, and matching-style weights in Table 2 all satisfy
this condition. Other weights, like Shannon’s entropy weights, also satisfy this condition.
However, “no weighting” or weighting towards subjects that can take the non-target treat-
ment would fail to satisfy this condition, and then it is necessary that positivity is satisfied
with respect to the target treatment.

Before proceeding, we highlight several key observations that provide further context
to these effects:
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1. Robustness to positivity violations. Flip effects retain robustness to arbi-
trary positivity violations, making them a complementary alternative to incremental
propensity score interventions (IPSIs) [Bonvini et al., 2023, Kennedy, 2019]. While
both IPSIs and flip interventions are time-varying dynamic stochastic interventions
that remain identifiable under positivity violations, flip interventions are distinct in
being explicitly constructed to target specific treatment regimes.

2. Interventions depending on the natural value of treatment. A critique of
interventions that depend on the natural value of treatment is that they may be
impractical because this value is unobserved in practice. This issue can be addressed
in two ways:

(i) An approximation can be constructed by defining interventions based on a sub-
ject’s intended treatment, which may closely approximate their natural treat-
ment value. See Young et al. [2014, Section 6] for a discussion.

(ii) It is possible to define flip interventions that do not depend on the natural value
of treatment while still yielding the same identification result as Theorem 1.
The next point elaborates on this modification.

3. Relaxing the sequential randomization assumption. The identification result
in Theorem 1 relies on strong sequential randomization (Assumption 2) because flip
interventions depend on the natural treatment value to retain an intuitive “flipping”
interpretation. However, this assumption can be relaxed to standard sequential ran-
domization (Assumption 1) by redefining the interventions so they do not depend on
the natural treatment value. Specifically, one could instead define

Dt = 1
(
Vt ≤ 1(at = 1)f ct {at;Ht(Dt−1)}

+
[
1− f ct {at;Ht(Dt−1)}

]
P{At(Dt−1) = 1 | Ht(Dt−1)}

)
where Vt ∼ Unif(0, 1). These redefined interventions satisfy the identification result
in (4) under standard sequential randomization and the identification result for the
average number of treatments under only the consistency assumption embedded in
the NPSEM. Moreover, they do not suffer from the practical concerns discussed in
the previous point.

4. Connections to maximally coupled policies. Flip interventions that depend on
the natural value of treatment are related to “maximally coupled generalized poli-
cies” [Levis et al., 2024], which minimize the number of subjects intervened on while
preserving a target interventional propensity score, Qt(At | Ht). This approach was
originally proposed to minimize bounds on causal effects under unmeasured con-
founding (e.g., adapting IPSIs [Levis et al., 2024, Section 3.3]). Here, we repurpose
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these interventions because they have a nice interpretation as flip interventions. Ex-
amining their robustness to unmeasured confounding remains an open question for
future work.

4.2 Properties of interventional flip effects; drawbacks of naive weighting
or trimming

In this section, we investigate the properties of longitudinal interventional flip effects and
outline issues with alternative estimands one might consider, justifying our focus on flip
interventions. First, we note that longitudinal interventional flip effects satisfy a minimal
property: if the treatment has no effect on the outcome but the interventions shift the
treatment distribution, then the interventional flip effect is zero.

Proposition 2. Let DT and D
′
T denote two flip interventions. If Y (bT ) = Y (b

′
T ) for all

bT , b
′
T ∈ {0, 1}T but

∑T
t=1 |E(Dt)− E(D′

t)| > 0, then
E
{
Y (DT )−Y (D

′
T )

}
T−1

∑T
t=1 |E(Dt−D′

t)|
= 0.

However, there is also a subtle consequence of the single-world nature of flip interven-
tions: longitudinal interventional flip effects may reflect both mechanistic differences in
potential outcomes and differences in sequential weighting/trimming. This occurs because
the intervention Dt affects Xt+1(Dt) and At+1(Dt) as well as the ultimate outcome Y (DT ).
As a result, only in certain extreme scenarios is it possible to isolate only the mechanistic
difference Y (aT )− Y (a′T ) multiplied by a weight.

By consider, we can consider a general weighted effect that succeeds in isolating the
weighted difference Y (aT )− Y (a′T ):

E

{Y (aT )− Y (a′T )}
∏T

t=1 f
c
t {at;Ht(at−1)}f ct {a′t;Ht(a

′
t−1)}

E
[∏T

t=1 f
c
t {at;Ht(at−1)}f ct {a′t;Ht(a′t−1)}

]
 . (6)

This is the weighted average treatment effect of aT versus a′T , where the weights are based
on the sequence of counterfactual propensity scores under each intervention over the whole
regime. This effect isolates the difference Y (aT ) − Y (a′T ) among subjects with non-zero
weights for both regimes, and therefore may be considered a desirable estimand. However,
it has two major limitations. First, it is “cross-world.” Notice that the weighting function
f ct {at;Ht(at−1)}f ct {a′t;Ht(a

′
t−1)} depends on counterfactual covariates under two treatment

regimes, and therefore one will be unobservable. Consequently, an intervention correspond-
ing to this effect cannot be implemented as a single-world intervention and it cannot be
falsified experimentally or implemented in practice. This limitation parallels natural ef-
fects in mediation [Andrews and Didelez, 2021, Richardson and Robins, 2013]. Second,
the effect corresponds to a contrast under future-dependent interventions, as clarified by
Proposition 3, next.
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Proposition 3. Let ΠT :=
∏T

t=1 f
c
t

{
at;Ht(at−1)

}
f ct
{
a′t;Ht(a

′
t−1)

}
and suppose at ≥ a′t

for all t ∈ {1, . . . , T}. Then, the treatment decisions DT = 1(AT = aT )AT + 1(AT 6=
aT )
{
aT1

(
V ≤ ΠT

)
+ AT1

(
V > ΠT

)}
and D′

T = 1(AT = a′T )AT + 1(AT 6= a′T )
{
a′T1

(
V ≤

ΠT

)
+ AT

(
V > ΠT

)}
yield a longitudinal interventional flip effect equal to the weighted

treatment effect in (6).

Proposition 3 shows that the weighted effect in (6) is defined using simultaneous flip
interventions: for subjects that would have followed the target regime, there is no inter-
vention; otherwise, for those that would be in the trimmed set, the intervention flips their
treatment to the target regime with probability equal to the weighted product across all
timepoints. A key limitation of these effects arises from the nature of these interventions,
which simultaneously alter the entire regime and rely on future information at earlier time-
points. For instance, the intervention at the first timepoint depends on a subject’s natural
treatment and covariate values at all timepoints. The simultaneous and cross-world nature
of the intervention hampers the interpretability and practicality of the effects. These issues
motivate our focus on flip interventions with longitudinal data and longitudinal interven-
tional flip effects.

5 Estimation and inference
In this section, we outline methods for estimating flip effects. We focus on estimating
mean potential outcomes E

{
Y (DT )

}
because estimating the average number of treatments

E(Dt) follows the same approach. We develop methods for estimating E(Dt) in detail in
Appendix A. Estimating and conducting inference on longitudinal interventional flip effects
will follow by the delta under mild regularity conditions.

Throughout, we have assumed that the weight function was known a priori. We will
continue to do so in this section. When this is not the case — for example, if one wanted
to decide a trimming threshold or smooth trimming parameter data-adaptively — then
estimation and inference are more complex; see Khan and Ugander [2022] for a review.

Moreover, we will assume the weight function is a smooth function of the propensity
score. Specifically, we will assume the identified weight function ft(at;Ht) in Theorem 1
satisfies

ft(at;Ht) = st{P(At = at | Ht)}

where st(·) is twice differentiable with non-zero and bounded derivatives. This includes all
the examples in Table 2 except trimming and matching-style weighting. The smoothness of
the weight function is crucial to allow for

√
n-convergence under nonparametric conditions.

With non-smooth weights, such as the trimming indicator, the lack of pathwise differen-
tiability due to the non-smoothness of the weight function creates complications. Without
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additional assumptions, the performance of estimators for these effects is dictated by the
behavior of propensity score estimators within the trimming indicator. While

√
n-rate

estimation or valid inference may be possible under parametric models for the propensity
scores or with specific nonparametric assumptions and estimators, general guarantees are
unavailable. Therefore, we will focus on smooth weights, which are pathwise differentiable
and allow for the construction of

√
n-consistent and asymptotically normal estimators un-

der nonparametric assumptions by leveraging nonparametric efficiency theory and efficient
influence functions [Bickel et al., 1993]. We will first establish the efficient influence func-
tion for the flip effect and then we will use it to construct multiply robust and sequentially
doubly robust estimators.

5.1 Notation

To facilitate exposition, we refine our notation. First, we let

rt(bt | ht) =
Qt(bt | ht)

P(At = bt | ht)
(7)

be the ratio of the interventional propensity score and the true propensity score and let
r0 = 1 and QT+1(AT+1 | HT+1) = 1. Then, we let mT+1 = Y , mT (bT ,HT ) = E(Y | AT =
bT ,HT ), and recursively define

mt(bt, ht) = E

∑
bt+1

mt+1(bt+1,Ht+1)Qt+1(bt+1 | Ht+1) | At = bt,Ht = ht

 (8)

as the sequential regression function for t < T .

5.2 Efficient influence function

The identification result in Theorem 1 suggests a “plug-in estimator” by plugging estimates
of the relevant nuisance functions into each of the relevant formulas and then taking a
sample average. With well-specified parametric models for the nuisance functions, the plug-
in estimator can achieve

√
n-convergence rates. However, if the models are mis-specified,

the plug-in estimator can be biased [Kang and Schafer, 2007, Vansteelandt et al., 2012].
Meanwhile, if the nuisance functions are estimated with nonparametric methods, the plug-
in estimator will typically inherit slower-than-

√
n nonparametric convergence rates. This

motivates estimators based on nonparametric efficiency theory [Bickel et al., 1993, Tsiatis,
2006, van der Vaart, 2000].

The first-order bias of the nonparametric plug-in can be characterized by the efficient
influence function of the functional, which can be thought of as its first derivative in a von
Mises expansion [von Mises, 1947]. The efficient influence function can be used to construct
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estimators that can achieve
√
n-convergence with nonparametric estimators for the nuisance

functions. The next result establishes the efficient influence function of E{Y (DT )}.

Proposition 4. Let ψ denote an identified flip effect E{Y (DT )} from Theorem 1 with
smooth weight function. Moreover, let

φt(bt;At,Ht) =
{
21(bt = at)− 1

}{
1(At = at)− P(At = at | Ht)

}
·
[
1− st{P(At = at | Ht)}+ s′t{P(At = at | Ht)}

{
1− P(At = at | Ht)

}]
where s′t(y) = ∂

∂xst(x)
∣∣
x=y

. Further suppose that the outcome Y has bounded variance and
the weight function is constructed such that rt(At | Ht) is bounded. Then, the centered
efficient influence function of ψ under a nonparametric model is

ϕ(Z) = ϕm(Z) + ϕQ(Z) where

ϕm(Z) =
T∑
t=0

{
t∏

s=0

rs(As | Hs)

}∑
bt+1

mt+1(bt+1,Ht+1)Qt+1(bt+1 | Ht+1)−mt(At,Ht)

 ,

ϕQ(Z) =
T∑
t=1

{
t−1∏
s=1

rs(As | Hs)

}∑
bt

mt(bt,Ht)φt(bt;At,Ht).

The efficient influence function in Proposition 4 follows a typical structure: ϕ(Z) con-
sists of a plug-in estimator minus the true functional, plus weighted residual terms. The first
component, ϕm(Z), represents the efficient influence function that would arise ifQt(At | Ht)
were known and did not require estimation. The second component, ϕQ(Z), emerges from
the necessity of estimating this quantity. It includes φt(bt;At,Ht), which is the centered
efficient influence function of E{Qt(At = bt | Ht)}.

The result requires bounded variance of ϕ(Z), which is guaranteed if Y has bounded
variance and rt(At | Ht) is bounded for all t ≤ T . The boundedness condition on rt can
be guaranteed through appropriate construction of the weight function. All the smooth
weights in Table 2 except for the smooth trimming weights satisfy it immediately. For
smooth trimming weights, the bound can be satisfied by construction. For instance, choos-
ing s(x) = 1− exp(−kx) ensures rt(At | Ht) =

Qt(At|Ht)
P(At|Ht)

is bounded since s(x)/x ≤ k.

5.3 Multiply robust-style estimator

The efficient influence function in Proposition 4 suggests a multiply robust-style estimator.

Algorithm 1 (Multiply robust-style estimator). Randomly split the data into K folds,
denoted by

{
Zk

}K
k=1

.
For k = 1 to K:
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1. Let ∪l 6=kZl be the training data and Zk be the evaluation data.

2. In the training data, regress At on Ht and obtain propensity score models P̂−k(At | Ht).

3. In the evaluation data, compute the interventional propensity scores Q̂k(At | Ht),
ratios r̂t,k(At | Ht), and efficient influence functions φ̂t,k(bt;At,Ht) for all subjects
and timepoints using P̂−k(At | Ht).

For t = T to t = 1:

1. For k = 1 to K:

(a) If t = T , then P̂T+1(HT+1) = Y . Otherwise, pseudo-outcome P̂t+1(Ht+1) is
available from the previous step in loop (see step #2 below).

(b) Regress P̂t+1(Ht+1) against At and Ht in the training data to obtain models
m̂t,−k(At,Ht).

(c) In the evaluation data, obtain predictions m̂t,k(0,Ht), m̂t,k(1,Ht).

2. Across the full data, compute pseudo-outcomes
P̂t(Ht) = m̂t(0,Ht)Q̂t(0 | Ht) + m̂t(1,Ht)Q̂t(1 | Ht) to use in the next step.

Then,

1. Compute the plug-in estimate m̂0 = Pn{P̂1(X1)} using the last pseudo-outcome from
the prior loop.

2. For all subjects in the data, compute the centered efficient influence function values
as

ϕ̂(Z) =

T∑
t=0

{
t∏

s=0

r̂s(As | Hs)

}∑
bt+1

m̂t+1(bt+1,Ht+1)Q̂t+1(bt+1 | Ht+1)− m̂t(At,Ht)


+

T∑
t=1

{
t−1∏
s=1

r̂s(As | Hs)

}∑
bt

m̂t(bt,Ht)φ̂t(bt;At,Ht)

where

φ̂t(bt;At,Ht) =
{
21(bt = at)− 1

}{
1(At = at)− P̂(At = at | Ht)

}
·
[
1− st{P̂(At = at | Ht)}+ s′t{P̂(At = at | Ht)}

{
1− P̂(At = at | Ht)

}]
Finally, output the point estimate and variance estimates

ψ̂ := m̂0 + Pn{ϕ̂(Z)} and
σ̂2 := Pn

{
ϕ̂(Z)2

}
17



Algorithm 1 constructs an estimate of the efficient influence function by first estimating
{Q̂t}Tt=1 and then working sequentially from t = T to t = 1 to estimate {m̂t}Tt=1. This
sequential regression formulation is the same as in Kennedy [2019], and uses an estimated
pseudo-outcome P̂t+1(Ht+1) in a regression to estimate mt(At,Ht). An alternative is the
targeted maximum likelihood estimator (TMLE) in Díaz et al. [2023], which offers the same
asymptotic guarantees. Algorithm 1 also employs sample splitting and cross-fitting to avoid
relying on Donsker or other complexity conditions on the nuisance function estimators
[Chen et al., 2022, Chernozhukov et al., 2018, Robins et al., 2008, van der Vaart and
Wellner, 1996, Zheng and van der Laan, 2010]. Therefore, we are agnostic to the choice of
regression method.

5.3.1 Multiply robust-style convergence guarantees

The next result provides the primary convergence guarantee for this estimator: a bound on
its bias. We then show that the estimator satisfies a rate multiply robust-style result, in the
sense of Rotnitzky et al. [2021], describing when

√
n-efficiency and asymptotic normality

hold.

Theorem 2. Under the setup of Proposition 4, let ψ̂ denote a point estimate from Algo-
rithm 1 and let

• m̃t(At,Ht) = E
{∑

bt+1
m̂t+1(bt+1,Ht+1)Q̂t+1(bt+1 | Ht+1) | At,Ht

}
and

• π̂t(Ht) := P̂(At = 1 | Ht).

Suppose ∃ C < ∞ such that P
{
m̂t(At,Ht) ≤ C

}
= P

{
mt(At,Ht) ≤ C

}
= 1 for t ≤ T .

Then,

∣∣∣E(ψ̂ − ψ
)∣∣∣ . min

{ T∑
t=1

‖π̂t − πt‖‖m̂t −mt‖+ ‖π̂t − πt‖2,

T∑
t=1

‖m̂t − m̃t‖
( t∑

s=1

‖π̂s − πs‖
)
+ ‖π̂t − πt‖

( t∑
s=1

‖π̂s − πs‖
)}

.

Theorem 2 provides a bound on the bias of the multiply robust-style estimator. Un-
der the assumptions of Proposition 4, we only require that both the true and estimated
regression functions mt and m̂t are bounded. This result provides three new contributions
in longitudinal data and sheds light on estimating WATEs in single-timepoint data:

1. Simultaneous bounds on the bias. We establish that two bounds hold at once,
so the bias can be bounded by their minimum. To our knowledge, this is novel.
This arises because the total bias decomposes into a sum of errors from t = 1 to
t = T , with the first part of the minimum obtained by decomposing the error at
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future timepoints via the sequential regression m̂t, and the second by decomposing
the error at past timepoints via {Q̂s}s≤t.

2. Extension of Díaz et al. [2023, Theorem 3]. The first part of the minimum ex-
tends Díaz et al. [2023, Theorem 3] to a one-step estimator and to dynamic stochastic
interventions with unknown Qt. In this setting, the dependence on future timepoints
s ≥ t is contained in ‖m̂t−mt‖, which captures the errors from sequential regressions
from s = T to s = t, as well as from the propensity scores {Q̂s}s>t that define the
pseudo-outcomes. Our bound is new in explicitly incorporating ‖π̂t−πt‖2, reflecting
the fact that the flipping probabilities must be estimated.

3. A tighter bound than Kennedy [2019, Theorem 3]. The second part of our
bound depends only on the sequential regression error at time t, ignoring pseudo-
outcome estimation. Specifically, it involves ‖m̂t − m̃t‖, whereas Kennedy [2019,
Theorem 3] upper bounds the same term by ‖m̂t − mt‖, which implicitly includes
additional error from future propensity scores and sequential regressions (as discussed
in point 2.).

4. Doubly robust-style bounds for WATE estimation when T = 1. For single-
timepoint data, this estimator yields doubly robust-style bounds for estimating the
class of WATEs described in Section 2. In some cases, this was already known; for ex-
ample, it is well-established that one can upper bound the bias of an estimator for the
ATO by

∑
a∈{0,1} ‖µ̂a−µa‖‖π̂−π‖+‖π̂−π‖2, where µa = E(Y | A = a,X), because

the ATO can be re-written as E{cov(A,Y |X)}
E{V(A|X)} . Our result includes that bias bound as

a special case. For more complex smooth weight functions, such as Shannon’s en-
tropy weights—which take the form f(X) = −

[
π(X) log π(X) + {1− π(X)} log{1−

π(X)}
]
—the literature has not, to our knowledge, developed doubly robust-style

estimators that allow for nonparametric nuisance estimation while accounting for
uncertainty in propensity score estimation during weight construction. Our result
confirms this is possible.

This bound on the bias indicates when weak convergence is possible.

Corollary 1 (Multiple robustness and weak convergence). Under the setup of Theorem 2,
let σ̂2 be a variance estimate from Algorithm 1. Suppose ‖ϕ̂− ϕ‖ = oP(1) and

min

{ T∑
t=1

‖π̂t − πt‖‖m̂t −mt‖+ ‖π̂t − πt‖2,

T∑
t=1

‖m̂t − m̃t‖
( t∑

s=1

‖π̂s − πs‖
)
+ ‖π̂t − πt‖

( t∑
s=1

‖π̂s − πs‖
)}

= oP(n
−1/2).
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Then, √
n

σ̂2
(
ψ̂ − ψ

)
 N(0, 1). (9)

Corollary 1 provides a multiply robust-style guarantee, showing conditions under which
the estimator achieves root-n convergence to a Gaussian limit. Specifically, the first re-
quirement ensures that the estimated efficient influence function is consistent, and the
second is the crucial multiply robust-style bound on the bias. In particular, the product of
the nuisance estimation errors from Theorem 2 must converge to zero at a rate of n−1/2.
This condition is achievable under nonparametric assumptions on the nuisance functions
(e.g., smoothness, sparsity, or bounded variation), where each nuisance function can be
estimated at a n−1/4 rate [Györfi et al., 2002].
Remark 4. When Qt is unknown, a model multiply robust-style result for consistency (in
the sense of Rotnitzky et al. [2021]) is less immediately interesting than in settings with
known Qt. When Qt is unknown, consistent estimation of {πt}Tt=1 is necessary, but is
also sufficient, to guarantee ψ̂ P−→ ψ. However, Theorem 2 implies a new result when Qt

is known: 2(T + 1) model multiple robustness; see, e.g., Díaz et al. [2023, Lemma 2] for
details on T + 1 model multiple robustness. In other words, our result implies that the
typical multiply robust estimator was twice as robust as was previously realized.

5.4 Sequentially doubly robust-style estimator

The multiply robust-style estimator can be improved to a sequentially doubly robust-
style estimator. One can gain intuition for how this is possible by examining the esti-
mated pseudo-outcome P̂t+1(Ht+1) in Algorithm 1. Notice that regressing P̂t+1(Ht+1) =
m̂t+1(0,Ht+1)Q̂t(0 | Ht+1) + m̂t+1(1,Ht+1)Q̂t+1(1 | Ht+1) against {At,Ht} corresponds to
using a plug-in estimator for mt(At,Ht). This estimator can be improved by debiasing this
pseudo-outcome. For sequential regressions with longitudinal data, this was first observed
in Luedtke et al. [2017] and Rotnitzky et al. [2017], and recently extended to LMTPs in
Díaz et al. [2023]. This general approach — debiasing a pseudo-outcome — has also been
applied to conditional effect estimation, continuous dose-response curve estimation, and
censoring [Kennedy, 2023, Kennedy et al., 2017, McClean et al., 2024a, Rubin and van der
Laan, 2007]. An adaptation of the estimator in Algorithm 1 is inspired by the following
lemma.

Lemma 1. Under the setup of Proposition 4, define Y = mT+1 =
∑

bT+1
mT+1 (QT+1 + φT+1)

and recursively define for t = T to t = 1

P ∗
t (Z) =

∑
bt

mt(bt, Ht)
{
Qt(bt | Ht) + φt(bt;At, Ht)

}

+

T∑
s=t

{
s∏

k=t

rk(Ak | Hk)

}∑
bs+1

ms+1(bs+1, Hs+1)
{
Qs+1(bs+1 | Hs+1) + φs+1(bs+1;As+1, Hs+1)

}
−ms(As, Hs)

 .
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Then,
E
{
P ∗
t+1(Z) | At,Ht

}
= mt(At,Ht). (10)

Moreover, suppose access to fixed nuisance estimates
{
m̂∗

s, Q̂s

}T

s=t+1
to construct P̂ ∗

t+1(Z).
Then,

E
{
P̂ ∗
t+1(Z)−mt(At,Ht) | At,Ht

}
=

T∑
s=t+1

E

[{
s−1∏

k=t+1

r̂k(Ak | Hk)

}{
ms(As,Hs)− m̂∗

s(As,Hs)
}{

r̂s(As | Hs)− rs(As | Hs)
}
| At,Ht

]

+

T∑
s=t+1

E

{ s−1∏
k=t+1

r̂k(Ak | Hk)

}∑
bs

m̂∗
s(As,Hs)

{
Q̂s(bs | Hs) + φ̂s(bs;As,Hs)−Qs(bs | Hs)

}
| At,Ht

 .
(11)

This lemma proposes the debiased pseudo-outcome, P ∗
t , then shows that it is indeed

unbiased (in (10)) and that its error, if it were estimated, is a product of errors (in (11)).
This mirrors Lemma 1 in Díaz et al. [2023], Lemma 1 in Luedtke et al. [2017], and Lemma
2 in Rotnitzky et al. [2017]. However, this result is new because it accounts for the error in
estimating the interventional propensity score Qt, from which the second term in the bias
decomposition in (11) arises. This result inspires a new, sequentially doubly robust-style
estimator, which amends Algorithm 1.
Algorithm 2 (Sequentially doubly robust-style estimator). Use Algorithm 1 with the fol-
lowing amendments to the sequential regression loop:

• In step 1(a), let P̂ ∗
T+1(Z) = Y .

• In step 1(b), regress P̂ ∗
t+1(Z) against At and Ht and label these models m̂∗

t,−k(At,Ht).

• In step 1(c), label the predictions in the evaluation data m̂∗
t,k(0,Ht), m̂

∗
t,k(1,Ht).

• In step 2, when constructing pseudo-outcomes, use the transformation P̂ ∗
t (Z) which

uses available nuisance estimates
{
m̂∗

s, Q̂s

}T

s=t+1
.

Finally, construct a point estimate and variance estimate as

ψ̂∗ := m̂∗
0 = Pn{P̂ ∗

1 (Z)} and

σ̂2 :=
n

n− 1
Pn

[{
P̂ ∗
1 (Z)− m̂∗

0

}2]
.

The estimator is similar to the multiply robust estimator in Algorithm 1, but uses the
debiased pseudo-outcomes and debiased sequential regression estimates. A consequence of
this is that P̂ ∗

1 (Z) already takes the same form as the un-centered efficient influence function
from Proposition 4 and the point estimate and variance estimate can be constructed using
P̂ ∗
1 (Z), rather than constructing an estimate of the efficient influence function.
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5.4.1 Sequentially doubly robust-style convergence guarantees

The next result gives the sequentially doubly robust-style properties of the estimator.

Theorem 3. Under the setup of Theorem 2, let ψ̂∗ denote a point estimate from Algo-
rithm 2 and let m̃∗

t (At,Ht) = E
{
P̂ ∗
t+1(Z) | At,Ht

}
. Moreover, suppose ∃ C <∞ such that

P{m̂∗
t (At,Ht) ≤ C} = 1 for t ≤ T . Then,∣∣∣E(ψ̂∗ − ψ

)∣∣∣ . T∑
t=1

‖π̂t − πt‖
(
‖m̂∗

t − m̃∗
t ‖+ ‖π̂t − πt‖

)
.

Theorem 3 shows that the estimate is sequentially doubly robust-style, in that its bias
can decomposed as a sum of errors across timepoints where the error at each timepoint only
depends on the propensity score at that timepoint and the sequential regression estimate at
that timepoint. Note that ‖m̂∗

t −m̃∗
t ‖ only captures the error from the sequential regression

at t; there is no dependence on s > t through the pseudo-outcome. Therefore, we have the
following asymptotic convergence guarantee.

Corollary 2. Under the setup of Theorem 3, let σ̂2 be a variance estimate from Algorithm 2.
Suppose ‖P̂ ∗

1 − P ∗
1 ‖ = oP(1) and

T∑
t=1

‖π̂t − πt‖
(
‖m̂∗

t − m̃∗
t ‖+ ‖π̂t − πt‖

)
= oP(n

−1/2).

Then, √
n

σ̂2
(
ψ̂ − ψ

)
 N(0, 1). (12)

Corollary 2 provides a sequentially doubly robust-style guarantee for weak convergence.
It improves on Corollary 1 because it only requires the nuisance estimators converge at a
rate of n−1/2 in product at each timepoint. There is no dependence across timepoints,
unlike in Corollary 1.

6 Ongoing work
In ongoing work, we are developing software implementation of our multiply robust and
sequentially doubly robust estimators in R. Future versions of this manuscript will include
data analyses and simulations with these estimators.

References

Ryan M Andrews and Vanessa Didelez. Insights into the cross-world independence assump-
tion of causal mediation analysis. Epidemiology, 32(2):209–219, 2021.

22



Peter J Bickel, Chris AJ Klaassen, Y Ritov, and JA Wellner. Efficient and adaptive
estimation for semiparametric models, volume 4. Springer, 1993.

Matteo Bonvini, Alec McClean, Zach Branson, and Edward H Kennedy. Incremental causal
effects: an introduction and review. In Handbook of matching and weighting adjustments
for causal inference, pages 349–372. Chapman and Hall/CRC, 2023.

Zach Branson, Edward H Kennedy, Sivaraman Balakrishnan, and Larry Wasserman.
Causal effect estimation after propensity score trimming with continuous treatments.
arXiv preprint arXiv:2309.00706, 2023.

Qizhao Chen, Vasilis Syrgkanis, and Morgane Austern. Debiased machine learning with-
out sample-splitting for stable estimators. Advances in Neural Information Processing
Systems, 35:3096–3109, 2022.

Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen,
Whitney Newey, and James Robins. Double/debiased machine learning for treatment
and structural parameters. The Econometrics Journal, 21(1):C1–C68, 2018.

Eric R Cohn, Eli Ben-Michael, Avi Feller, and José R Zubizarreta. Balancing weights
for causal inference. In Handbook of Matching and Weighting Adjustments for Causal
Inference, pages 293–312. Chapman and Hall/CRC, 2023.

Richard K Crump, V Joseph Hotz, Guido W Imbens, and Oscar A Mitnik. Dealing with
limited overlap in estimation of average treatment effects. Biometrika, 96(1):187–199,
2009.

Iván Díaz and Mark van der Laan. Population intervention causal effects based on stochas-
tic interventions. Biometrics, 68(2):541–549, 2012.

Iván Díaz, Nicholas Williams, Katherine L Hoffman, and Edward J Schenck. Nonparametric
causal effects based on longitudinal modified treatment policies. Journal of the American
Statistical Association, 118(542):846–857, 2023.

László Györfi, Michael Kohler, Adam Krzyzak, Harro Walk, et al. A distribution-free theory
of nonparametric regression, volume 1. Springer, 2002.

Jens Hainmueller. Entropy balancing for causal effects: A multivariate reweighting method
to produce balanced samples in observational studies. Political analysis, 20(1):25–46,
2012.

Sebastian Haneuse and Andrea Rotnitzky. Estimation of the effect of interventions that
modify the received treatment. Statistics in medicine, 32(30):5260–5277, 2013.

Miguel Hernán and James Robins. Causal Inference: What if. Boca Raton: Chapman &
Hall/CRC, 2020.

23



Aksel KG Jensen, Theis Lange, Olav L Schjørring, and Maya L Petersen. Identification and
responses to positivity violations in longitudinal studies: an illustration based on inva-
sively mechanically ventilated icu patients. Biostatistics & Epidemiology, 8(1):e2347709,
2024.

Joseph DY Kang and Joseph L Schafer. Demystifying double robustness: A comparison of
alternative strategies for estimating a population mean from incomplete data. Statistical
Science, 22(4):523–539, 2007.

Edward Kennedy, Sivaraman Balakrishnan, and Larry Wasserman. Semiparametric coun-
terfactual density estimation. Biometrika, 110(4):875–896, 2023.

Edward H Kennedy. Nonparametric causal effects based on incremental propensity score
interventions. Journal of the American Statistical Association, 114(526):645–656, 2019.

Edward H Kennedy. Towards optimal doubly robust estimation of heterogeneous causal
effects. Electronic Journal of Statistics, 17(2):3008–3049, 2023.

Edward H Kennedy, Zongming Ma, Matthew D McHugh, and Dylan S Small. Non-
parametric methods for doubly robust estimation of continuous treatment effects. Jour-
nal of the Royal Statistical Society Series B: Statistical Methodology, 79(4):1229–1245,
2017.

Edward H Kennedy, Sivaraman Balakrishnan, and Max G’Sell. Sharp instruments for
classifying compliers and generalizing causal effects. The Annals of Statistics, 48(4):
2008–2030, 2020.

Samir Khan and Johan Ugander. Doubly-robust and heteroscedasticity-aware sample trim-
ming for causal inference. arXiv preprint arXiv:2210.10171, 2022.

Alexander W Levis, Edward H Kennedy, Alec McClean, Sivaraman Balakrishnan, and
Larry Wasserman. Stochastic interventions, sensitivity analysis, and optimal transport.
arXiv preprint arXiv:2411.14285, 2024.

Fan Li and Fan Li. Propensity score weighting for causal inference with multiple treatments.
The Annals of Applied Statistics, 13(4):2389–2415, 2019.

Fan Li, Kari Lock Morgan, and Alan M Zaslavsky. Balancing covariates via propensity
score weighting. Journal of the American Statistical Association, 113(521):390–400, 2018.

Alexander R Luedtke, Oleg Sofrygin, Mark J van der Laan, and Marco Carone. Se-
quential double robustness in right-censored longitudinal models. arXiv preprint
arXiv:1705.02459, 2017.

Alec McClean, Zach Branson, and Edward H Kennedy. Nonparametric estimation of con-
ditional incremental effects. Journal of Causal Inference, 12(1):20230024, 2024a.

24



Alec McClean, Yiting Li, Sunjae Bae, Mara A McAdams-DeMarco, Iván Díaz, and Wenbo
Wu. Fair comparisons of causal parameters with many treatments and positivity viola-
tions. arXiv preprint arXiv:2410.13522, 2024b.

Kelly L Moore, Romain Neugebauer, Mark J van der Laan, and Ira B Tager. Causal
inference in epidemiological studies with strong confounding. Statistics in medicine, 31
(13):1380–1404, 2012.

Judea Pearl. Causality. Cambridge University Press, 2009.

Maya L Petersen, Kristin E Porter, Susan Gruber, Yue Wang, and Mark J Van Der Laan.
Diagnosing and responding to violations in the positivity assumption. Statistical methods
in medical research, 21(1):31–54, 2012.

Thomas S Richardson and James M Robins. Single world intervention graphs (swigs): A
unification of the counterfactual and graphical approaches to causality. Center for the
Statistics and the Social Sciences, University of Washington Series. Working Paper, 128
(30):2013, 2013.

James Robins. A new approach to causal inference in mortality studies with a sustained ex-
posure period—application to control of the healthy worker survivor effect. Mathematical
modelling, 7(9-12):1393–1512, 1986.

James Robins, Lingling Li, Eric Tchetgen Tchetgen, and Aad van der Vaart. Higher order
influence functions and minimax estimation of nonlinear functionals. In Institute of
Mathematical Statistics Collections, pages 335–421. Institute of Mathematical Statistics,
2008.

James M Robins, Miguel A Hernán, and Uwe Siebert. Effects of multiple interventions.
Comparative quantification of health risks: global and regional burden of disease at-
tributable to selected major risk factors, 1:2191–2230, 2004.

Andrea Rotnitzky, James Robins, and Lucia Babino. On the multiply robust estimation
of the mean of the g-functional. arXiv preprint arXiv:1705.08582, 2017.

Andrea Rotnitzky, Ezequiel Smucler, and James M Robins. Characterization of parameters
with a mixed bias property. Biometrika, 108(1):231–238, 2021.

Daniel Rubin and Mark J van der Laan. A doubly robust censoring unbiased transforma-
tion. The international journal of biostatistics, 3(1), 2007.

Kyle Schindl, Shuying Shen, and Edward H Kennedy. Incremental effects for continuous
exposures. arXiv preprint arXiv:2409.11967, 2024.

Mats J Stensrud, JD Laurendeau, and Aaron L Sarvet. Optimal regimes for algorithm-
assisted human decision-making. Biometrika, page asae016, 2024.

25



James H Stock. Nonparametric policy analysis. Journal of the American Statistical Asso-
ciation, 84(406):567–575, 1989.

Sarah L Taubman, James M Robins, Murray A Mittleman, and Miguel A Hernán. In-
tervening on risk factors for coronary heart disease: an application of the parametric
g-formula. International journal of epidemiology, 38(6):1599–1611, 2009.

Eric J Tchetgen Tchetgen and Tyler J VanderWeele. On causal inference in the presence
of interference. Statistical methods in medical research, 21(1):55–75, 2012.

Anastasios A Tsiatis. Semiparametric theory and missing data, volume 4. Springer, 2006.

Aad W van der Vaart. Asymptotic statistics, volume 3. Cambridge University Press, 2000.

Aad W van der Vaart and Jon A Wellner. Weak convergence and empirical processes.
Springer, 1996.

Stijn Vansteelandt, Maarten Bekaert, and Gerda Claeskens. On model selection and model
misspecification in causal inference. Statistical methods in medical research, 21(1):7–30,
2012.

Richard von Mises. On the asymptotic distribution of differentiable statistical functions.
The annals of mathematical statistics, 18(3):309–348, 1947.

Shu Yang and Peng Ding. Asymptotic inference of causal effects with observational studies
trimmed by the estimated propensity scores. Biometrika, 105(2):487–493, 2018.

Jessica G Young, Miguel A Hernán, and James M Robins. Identification, estimation and
approximation of risk under interventions that depend on the natural value of treatment
using observational data. Epidemiologic methods, 3(1):1–19, 2014.

Shuxi Zeng, Fan Li, and Liangyuan Hu. Propensity score weighting analysis of survival
outcomes using pseudo-observations. Statistica Sinica, 33(3):2161–2184, 2023.

Wenjing Zheng and Mark J van der Laan. Asymptotic theory for cross-validated targeted
maximum likelihood estimation. U.C. Berkeley Division of Biostatistics Working Paper
Series, 2010.

Xiang Zhou and Aleksei Opacic. Marginal interventional effects. arXiv preprint
arXiv:2206.10717, 2022.

26



Appendix
This appendix does the following:

Appendix A provides efficient estimators for the average treatment value.

Appendix B provides proofs for the results in Section 2.

Appendix C provides proofs for the results in Section 4.

Appendix D provides proofs for the results in Section 5.

Appendix E provides proofs for the results in Appendix A.

A Estimating the average treatment value
For longitudinal interventional flip interventions defined in (3), we must also estimate E(Dt) and
E(D′

t). These estimands are identified in Theorem 1. In this section, we focus on estimating
E(DT ) when {D1, . . . , DT } are flip interventions with smooth weights, as in Section 5. Adapting
the estimator for t < T is straightforward. Using the notation from the main paper, the identified
estimand is

ψD = E

[
QT (AT = 1 | HT )

{
T−1∏
t=1

rt(At | Ht)

}]
(13)

where rt(At | Ht) =
Qt(At|Ht)
P(At|Ht)

,

Qt(At = bt | Ht) = P(AT = bT | HT ) + {21(bt = at)− 1} st{P(At = at | Ht)}{1− P(At = at | Ht)},

and st is a smooth and twice differentiable function of the propensity score with bounded derivatives.

We define the sequential regression at time T as mT (0,HT ) = 0 and mT (1,HT ) = 1 and then
recursively define

mt(At,Ht) = E

∑
bt+1

mt+1(bt+1,Ht+1)Qt+1(bt+1 | Ht+1) | At,Ht

 .

for t < T . Then, we can derive the efficient influence function.

Proposition 5. Let ψD be as in (13). Under the setup of Proposition 4 the centered efficient
influence function of ψD under a nonparametric model is

ϕD(Z) =

T∑
t=1

{
t−1∏
s=1

rs(As | Hs)

}∑
bt

mt(bt,Ht) {Qt(bt | Ht) + φt(bt;At,Ht)} −mt−1(At−1,Ht−1)

 .
Proof. The proof is deferred to the Appendix E.

One can construct a multiply robust-style estimator based on this efficient influence function.
It is a straightforward adaptation of Algorithm 1 from the main paper.
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Algorithm 3 (Multiply robust-style estimator). Randomly split the data into K folds, denoted by{
Zk

}K
k=1

.
For k = 1 to K:

1. Let ∪l 6=kZl be the training data and Zk be the evaluation data.

2. In the training data, regress At on Ht and obtain propensity score models P̂−k(At | Ht).

3. In the evaluation data, compute the interventional propensity scores Q̂k(At | Ht), ratios
r̂t,k(At | Ht), and efficient influence functions φ̂t,k(bt;At,Ht) for all subjects and timepoints
using P̂−k(At | Ht).

For t = T − 1 to t = 1:

1. For k = 1 to K:

(a) If t = T − 1, then P̂T (HT ) = Q̂T (AT = 1 | HT ). Otherwise, pseudo-outcome P̂t+1(Ht+1)
is available from the previous step in loop (see step #2 below).

(b) Regress P̂t+1(Ht+1) against At and Ht in the training data to obtain models m̂t,−k(At,Ht).
(c) In the evaluation data, obtain predictions m̂t,k(0,Ht), m̂t,k(1,Ht).

2. Across the full data, compute pseudo-outcomes
P̂t(Ht) = m̂t(0,Ht)Q̂t(0 | Ht) + m̂t(1,Ht)Q̂t(1 | Ht) to use in the next step.

Then,

1. Compute the plug-in estimate m̂0 = Pn{P̂1(X1)} using the last pseudo-outcome from the prior
loop.

2. For all subjects in the data, compute the centered efficient influence function values as

ϕ̂D(Z) =

T∑
t=1

{
t−1∏
s=1

r̂s(As | Hs)

}∑
bt

m̂t(bt,Ht)
{
Q̂t(bt | Ht) + φ̂t(bt;At,Ht)

}
− m̂t−1(At−1,Ht−1)


where

φ̂t(bt;At,Ht) =
{
21(bt = at)− 1

}{
1(At = at)− P̂(At = at | Ht)

}
·
[
1− st{P̂(At = at | Ht)}+ s′t{P̂(At = at | Ht)}

{
1− P̂(At = at | Ht)

}]
.

Finally, output the point estimate and variance estimates

ψ̂D := m̂0 + Pn{ϕ̂D(Z)} and
σ̂2D := Pn

{
ϕ̂D(Z)

2
}
.

We have the following bound on the bias of the estimator from Algorithm 3.

Theorem 4. Under the setup of Theorem 2, let ψD be as in (13) and ψ̂D denote the estimator from
Algorithm 3. Moreover, let m̃t(At,Ht) = E

{∑
bt+1

m̂t+1(bt+1,Ht+1)Q̂t+1(bt+1 | Ht+1) | At,Ht

}
.

Then, ∣∣∣E(ψ̂D − ψD

)∣∣∣ . min

{ T∑
t=1

‖m̂t −mt‖‖π̂t − πt‖+ ‖π̂t − πt‖2,
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T∑
t=1

‖m̂t − m̃t‖

(
t∑

s=1

‖π̂s − πs‖

)
+ ‖π̂t − πt‖

(
t∑

s=1

‖π̂s − πs‖

)
.

Proof. This follows by the same analysis as for the efficient estimator of E{Y (DT )} and using the
algebra in the proof of Proposition 5. We omit it for brevity.

Then, we have the following convergence guarantee.

Corollary 3. Under the setup of Theorem 4, let σ̂2D be a variance estimate from Algorithm 3.
Suppose ‖ϕ̂D − ϕD‖ = oP(1) and

min

{ T∑
t=1

‖m̂t −mt‖‖π̂t − πt‖+ ‖π̂t − πt‖2,

T∑
t=1

‖m̂t − m̃t‖

(
t∑

s=1

‖π̂s − πs‖

)
+ ‖π̂t − πt‖

(
t∑

s=1

‖π̂s − πs‖

)
= oP(n

−1/2).

Then, √
n

σ̂2D
(ψ̂D − ψD) N(0, 1).

As in the main paper with the following result, we motivate the sequentially doubly robust-style
estimator with a result on the debiased pseudo-outcome.

Lemma 2. Under the setup of Proposition 5, define P ∗
T (Z) = QT (At = 1 | HT ) + φT (1;AT ,HT )

and recursively define for t = T − 1 to t = 1

P ∗
t (Z) =

∑
bt

mt(bt, Ht)
{
Qt(bt | Ht) + φt(bt;At, Ht)

}

+

T−1∑
s=t

{
s∏

k=t

rk(Ak | Hk)

}∑
bs+1

ms+1(bs+1, Hs+1)
{
Qs+1(bs+1 | Hs+1) + φs+1(bs+1;As+1, Hs+1)

}
−ms(As, Hs)

 .

Then,
E
{
P ∗
t+1(Z) | At,Ht

}
= mt(At,Ht). (14)

Moreover, suppose access to fixed nuisance estimates
{
m̂∗

s, Q̂s

}T

s=t+1
to construct P̂ ∗

t+1(Z). Then,

E
{
P̂ ∗
t+1(Z)−mt(At,Ht) | At,Ht

}
=

T∑
s=t+1

E

[{
s−1∏

k=t+1

r̂k(Ak | Hk)

}{
ms(As,Hs)− m̂∗

s(As,Hs)
}{

r̂s(As | Hs)− rs(As | Hs)
}
| At,Ht

]

+
T∑

s=t+1

E

{ s−1∏
k=t+1

r̂k(Ak | Hk)

}∑
bs

m̂∗
s(As,Hs)

{
Q̂s(bs | Hs) + φ̂s(bs;As,Hs)−Qs(bs | Hs)

}
| At,Ht

 .
(15)

Proof. See Appendix E.

This result suggests the simple amendment to the estimator from Algorithm 3.
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Algorithm 4 (Sequentially doubly robust-style estimator). Use Algorithm 3 with the following
amendments to the sequential regression loop:

• In step 1(a), let P̂ ∗
T (Z) = Q̂T (AT = 1 | HT ) + φ̂T (1;AT ,HT ).

• In step 1(b), regress P̂ ∗
t+1(Z) against At and Ht and label these models m̂∗

t,−k(At,Ht).

• In step 1(c), label the predictions in the evaluation data m̂∗
t,k(0,Ht), m̂

∗
t,k(1,Ht).

• In step 2, when constructing pseudo-outcomes, use the transformation P̂ ∗
t (Z) which uses

available nuisance estimates
{
m̂∗

s, Q̂s

}T

s=t+1
.

Finally, construct a point estimate and variance estimate as

ψ̂∗
D := m̂∗

0 = Pn{P̂ ∗
1 (Z)} and

σ̂2D :=
n

n− 1
Pn

[{
P̂ ∗
1 (Z)− m̂∗

0

}2]
.

Finally, we have the following bias bound and convergence guarantee.

Theorem 5. Under the setup of Theorem 4, let ψ̂∗
D denote a point estimate from Algorithm 4 and

let m̃∗
t (At,Ht) = E

{
P̂ ∗
t+1(Z) | At,Ht

}
. Then,

∣∣∣E(ψ̂∗
D − ψD

)∣∣∣ . T∑
t=1

‖π̂t − πt‖
(
‖m̂∗

t − m̃∗
t ‖+ ‖π̂t − πt‖

)
.

B Proofs for Section 2: Proposition 1
Proof. The numerator satisfies

E
[
Y {Df (1)} − Y {Df (0)}

]
= E

(
E
[
Y {Df (1)} − Y {Df (0)} | X

])
=

∑
a∈{0,1}

E
[
E{Y (a) | Df (1) = a,X}P{Df (1) = a | X}

]
− E

[
E{Y (a) | Df (0) = a,X}P{Df (0) = a | X}

]
=

∑
a∈{0,1}

E [E{Y (a) | X}P{Df (1) = a | X}]− E [E{Y (a) | X}P{Df (0) = a | X}]

= E
(
E{Y (1)− Y (0) | X}

[
P{Df (1) = 1 | X} − P{Df (0) = 1 | X}

])
where the first line follows by iterated expectations and the second by taking the expectations over
Df (1) and Df (0). The third follows by the unconfoundedness assumption because Df (a) is only a
function of A, conditional on X, so that Y (a) ⊥⊥ Df (a) | X. The final line follows by rearranging.
Next, notice that

P{Df (1) = 1 | X} = P
[
1(A = 1)A+ 1(A = 0) · 1{V ≤ f(X)} = 1 | X

]
= π(X) + {1− π(X)}f(X)

and
P{Df (0) = 1 | X} = P [1(A = 1) · 1{V > f(X)} = 1 | X] = π(X){1− f(X)}.

The difference is
P{Df (1) = 1 | X} − P{Df (0) = 1 | X} = f(X).
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Therefore, the numerator satisfies

E
[
Y {Df (1)} − Y {Df (0)}

]
= E [E{Y (1)− Y (0) | X}f(X)] .

By the same argument, the denominator satisfies

E
{
Df (1)−Df (0)

}
= E {f(X)} .

The result follows.

C Proofs for Section 4

C.1 Helper results

For the identification results, we provide several helper lemmas. We also slightly amend our notation
from the main paper, so we can specify the dependence of random variables on the counterfactual
past interventions. In what follows, we make the following “assumption” (which corresponds to the
setup in the main paper).
Assumption 3. Suppose the following setup:

• {D1, D2(D1), . . . , DT (DT−1)} denote a set of treatment decisions where
Dt(Dt−1) = ft{At(Dt−1),Ht(Dt−1), Vt} for some deterministic function ft, where V1, . . . , VT
are mutually independent and Vt ⊥⊥ Z for all t ∈ {1, . . . , T},

• Xt(at−1) denotes the natural covariate history under an intervention that sets treatment to
at−1 up until time t− 1,

• Ht(at−1) =
{
Xt−1(at−1), Dt−1 = at−1

}
denotes the natural covariate history and the inter-

vention treatment history,

• At(at−1) denotes the natural value of treatment after history Ht(at−1),

• Dt(at−1) = dt{At(at−1),Ht(at−1), Vt}, i.e., the treatment decision at time t is random via
At(at−1),Ht(at−1), and Vt,

• Y (at, Dt+1) denotes the potential outcome under an intervention that sets treatment at up
until time t and assigns treatment according to treatment decisions
Dt+1 = {Dt+1(at), Dt+2(Dt+1, at), . . . DT (at, Dt+1, . . . , DT−1)} thereafter.

The first result gives us the important consistency steps we use within the g-formula. In essence,
it says that if we condition on an observed history up until the end of timepoint t − 1, then the
counterfactual history in timepoint t is equal to the observed history. An important corollary is
that, conditional on an observed history up until the end of timepoint t− 1, the propensity scores
at timepoint t are identified.

Proposition 6. Conditional on {Xt−1, At−1 = bt−1},

• Ht(bt−1) =
{
Xt, At−1 = bt−1

}
and

• At(bt−1) = At.
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As a consequence, conditional on {Xt−1, At−1 = bt−1},

P{At(bt−1) = bt | Ht(bt−1)} = P(At = bt | Xt, At−1 = bt−1).

In other words, the propensity score at timepoint t is identified.

Proof. These follow by the consistency assumption in the NPSEM.

The next result gives us the crucial exchangeability we need when the intervention depends on
the natural value of treatment.

Lemma 3. Under Assumption 2 and Assumption 3,

At(at−1) ⊥⊥ Y (at, Dt+1) | Ht(at−1) and
Dt(at−1) ⊥⊥ Y (at, Dt+1) | Ht(at−1).

Proof. Conditional on Ht(at−1), At(at−1) only depends on the random variable UA,t. Meanwhile,
Y (at, Dt+1) depends on (V t+1, UA,t+1, UX,t+1, UY ). Both results then follow by Assumption 2 and
the assumption on V T .

The next result gives us the same exchangeability result when the intervention does not depend
on the natural value of treatment. It only requires standard exchangeability.

Lemma 4. Under Assumption 3, suppose instead that

Dt(at−1) = dt{P{At(at−1) | Ht(at−1)},Ht(at−1), Vt}

for some function ft; i.e., the intervention only depends on the natural propensity score, the natural
covariate history, and auxiliary randomness, but not the natural value of treatment. Then, under
only Assumption 1,

At(at−1) ⊥⊥ Y (at, Dt+1) | Ht(at−1) and
Dt(at−1) ⊥⊥ Y (at, Dt+1) | Ht(at−1).

Proof. Conditional on the natural covariate history, the intervention is only random via Vt. Mean-
while, Dt+1 are only random via the future natural covariate history and random variables V t+1.
Therefore, conditional on Ht(at−1), Y (at, Dt+1) is only random via (UX,t+1, UY , V t+1). Therefore,
the result follows by Assumption 1 and the assumption on V T .

Remark 5. The construction in Lemma 4 applies to our suggested stochastic amendments in Sec-
tion 4.1, such as

Dt = 1

(
Vt ≤ 1(at = 1)f ct {at;Ht(Dt−1)}

+
[
1− f ct {at;Ht(Dt−1)}

]
P{At(Dt−1 = 1 | Ht(Dt−1)}

)
for flip interventions.

Finally, we establish a result for positivity, which shows that the flip interventions avoid posi-
tivity violations under the condition in Theorem 1.
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Lemma 5. Under the setup of Theorem 1, P
{
P(At = bt | Ht) = 0 =⇒ Qt(bt | Ht) = 0

}
= 1 for

bt ∈ {0, 1} for both flip interventions satisfying P(At = at | Ht) =⇒ ft(at;Ht) = 0, where ft is
defined in Theorem 1.

Proof. For flip interventions, when at is the target treatment

Qt(at | Ht) = P(At = at | Ht) + {1− P(At = 1− at | Ht)}ft(at;Ht).

By construction, P(At = at | Ht) = 0 =⇒ ft(at;Ht) = 0; therefore, P(At = at | Ht) = 0 implies

Qt(at | Ht) = 0 + 1 · 0 = 0.

Meanwhile, P(At = 1− at | Ht) = 0 implies

Qt(at | Ht) = 1 + 0 = 1

which itself implies Qt(1− at | Ht) = 0.

C.2 Proof of Theorem 1

Finally, we have the full proof of the main theorem.

Proof. First, we have

E
{
Y (DT )

}
= E

[
E
{
Y (DT ) | X1

}]
= E

[
E
{
Y (DT ) | D1, X1

}
| X1

]
= E

[∑
b1

E
{
Y (b1, D2) | D1 = b1, X1

}
P(D1 = b1 | X1)

]
= E

[∑
b1

E
{
Y (b1, D2) | A1 = b1, X1

}
Q1(b1 | X1)

]
≡
∑
b1

∫
X1

E
{
Y (b1, D2) | A1 = b1, x1

}
Q1(b1 | x1)dP(x1)

where the first line follows by iterated expectations on X1 and then on X1 and D1, the second by
taking the expectation over D1, the third by Lemma 3 in the inner expectation and by the definition
of D1 in the outer probability and Proposition 6 to identify the counterfactual trimming indicator,
and the fourth by linearity of expectation and definition. Note that, by Lemma 5, the outer
expectation is well-defined. The inner expectation might not be well-defined, but Q1(b1 | x1) = 0
whenever that occurs.

The rest of the proof will follow by induction. We address the t = 2 step. We have

E
{
Y (b1, D2) | A1 = b1, X1

}
= E

[
E
{
Y (b1, D2) | X2(b1), A1 = b1, X1} | A1 = b1, X1

]
≡ E

[
E
{
Y (b1, D2) | H2(b1)} | A1 = b1, X1

]
= E

[∑
b2

E
{
Y (b1, b2, D3) | D2(b1) = b2,H2(b1)}P{D2(b1) = b2 | H2(b1)} | A1 = b1, X1

]
= E

[∑
b2

E
{
Y (b1, b2, D3) | A2(b1) = b2,H2(b1)}Q2(b2 | b1, X2) | A1 = b1, X1

]

33



=
∑
b2

E
[
E
{
Y (b1, b2, D3) | A2 = b2, X2, A1 = b1, X1}Q2(b2 | b1, X2) | A1 = b1, X1

]
where the first line follows by iterated expectations on X2(b1), A1 = b1, X1, the second line by
Proposition 6, and the third by iterated expectations on D2(b2),H2(b1) and then taking the ex-
pectation over D2(b2). The fourth follows by Lemma 3 inside the expectation; meanwhile, the
probability Q2 is identified by Proposition 6. The final line follows again by Proposition 6. Again,
note that by Lemma 5, the outer expectation is well-defined. The inner expectation might not be
well-defined, but Q2(b2 | H2) = 0 whenever that occurs.

Repeating this process t− 2 more times yields

E
{
Y (DT )

}
=

∑
bT∈{0,1}T

∫
XT

E{Y (bt) | AT = bT , XT = xT }
T∏
t=1

Qt(bt | bt−1, xt)dP(xt | bt−1, xt−1).

The final result follows by the consistency assumption embedded in the NPSEM. The IPW result
follows by taking the expectation over At.

Meanwhile, the identification of E(Dt) follows by essentially the same argument. We’ll repeat
the first step here:

E(Dt) =
∑
b1

E{E(Dt | D1 = b1, X1)P(D1 = b1 | X1)} =
∑
b1

E{E(Dt | A1 = b1, X1)Q1(b1 | X1)}

where the first equation follows by iterated expectations, the second by Lemma 3 to exchange
D1 = b1 with A1 = b1 and by the definition of D1 to yield P(D1 = b1 | X1) = Q1(b1 | X1). The
result follows by repeating this process t− 1 more times.

Remark 6. Suppose the flip intervention was stochastic as in our suggested stochastic amendment
at the end of Section 4.1:

Dt = 1

(
Vt ≤ 1(at = 1)f ct {at;Ht(Dt−1)}

+
[
1− f ct {at;Ht(Dt−1)}

]
P{At(Dt−1 = 1 | Ht(Dt−1)}

)
.

Then, the sequential exchangeability step would follow by Lemma 4, which only requires stan-
dard sequential randomization in Assumption 1. Meanwhile, identification of E(Dt) would only
require the NPSEM assumption and possibly positivity depending on the weight function, but no
exchangeability assumption.

C.3 Proposition 3

Proof. We have

E
{
Y (DT )

}
= E

[∑
bT

E{Y (bT ) | DT = bT , AT ,ΠT }P(DT = bT | AT ,ΠT )
]

= E
[∑

bT

E{Y (bT ) | AT ,ΠT }P(DT = bT | AT ,ΠT )
]

34



where the first line follows by iterated expectations on AT ,ΠT and then on DT , AT ,ΠT and taking
the expectation over DT , and the second line follows because DT ⊥⊥ Y (bT ) | AT ,ΠT because DT is
only random via V conditional on AT ,ΠT .

The same holds for E
{
Y (D

′
T )
}

. Then,

E{Y (DT )−Y (D
′
T )} =

∑
bT

E
[
E{Y (bT ) | AT , XT }

{
P(DT = bT | AT ,ΠT )− P(D′

T = bT | AT ,ΠT )
}]
.

For the propensity scores, we have

P(DT = aT | AT ,ΠT ) = 1(AT = aT ) + 1(AT 6= aT )ΠT ,

P(DT = bT | AT ,ΠT ) = 1(AT = bT )(1−ΠT ) for bT 6= aT ,

P(D′
T = a′T | AT ,ΠT ) = 1(AT = a′T ) + 1(AT 6= a′T )ΠT , and

P(DT = bT | AT ,ΠT ) = 1(AT = bT )(1−ΠT ) for bT 6= a′T .

Plugging these results into the prior display yields

E{Y (DT )− Y (D
′
T )} = E

([
E{Y (aT ) | AT ,ΠT } − E{Y (aT ) | AT ,ΠT }

]
ΠT

)
.

The result follows by iterated expectations on AT ,ΠT . The same argument holds for the denomi-
nator of (6).

D Proofs for Section 5

D.1 Helper lemmas of efficient influence function of Qt

We begin with several general helper lemmas.

Lemma 6. Under the setup of Proposition 4, ϕm(Z) and ϕQ(Z) are mean-zero.

Proof. This follows by iterated expectations on Ht.

The next two lemmas are about the efficient influence function of E{Qt(bt | Ht)} and its
estimator as constructed in the body of the paper.

Lemma 7. Under the setup of Proposition 4,

E{φt(bt;At,Ht) | Ht} = 0.

and

E{φ̂t(bt;At,Ht) | Ht} =
{
21(bt = at)− 1

}{
P(At = at)− P̂(At = at | Ht)

}
·
[
1− st{P̂(At = at | Ht)}+ s′t{P̂(At = at | Ht)}

{
1− P̂(At = at | Ht)

}]
.

Proof. These follow by iterated expectations on Ht.

In the next lemma we omit arguments for brevity, so that Pt = P(At = at | Ht) and st =
st{P(At = at | Ht)} and P̂t and ŝt(at) are defined similarly.
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Lemma 8. Under the setup of Proposition 4,

E{φ̂t(bt;At,Ht) + Q̂t(bt | Ht)−Qt(bt | Ht) | Ht} =

=
{
21(bt = at)− 1

}([ ŝ′′t
2

(
P̂t − Pt

)2
+ o
{
(P̂t − Pt)

2
}](

P̂t − 1
)
+ (ŝ− s)

(
P̂t − Pt

))
Proof. First, note that by definition Qt(bt | Ht) = P(At = bt | Ht) +

{
21(bt = at) − 1

}
st{P(At =

at | Ht){1− P(At = at | Ht)} and therefore

E
{
Q̂t(bt | Ht)−Qt(bt | Ht) | Ht

}
=
{
21(bt = at)− 1

}{
P̂t − Pt + ŝt · (1− P̂t)− st · (1− Pt)

}
,

where we omit arguments on the right-hand side. Therefore, by iterated expectations and rear-
ranging, we have

E{φ̂t(bt;At,Ht) + Q̂t(bt | Ht)−Qt(bt | Ht) | Ht}

=
{
21(bt = at)− 1

}[
(Pt − P̂t)

{
1− ŝt + ŝ′t · (1− P̂t)

}
+ ŝt · (1− P̂t)− st · (1− Pt) + P̂t − Pt

]
=
{
21(bt = at)− 1

}[
ŝ′t · (Pt − P̂t) + ŝt − st − P̂t

{
ŝ′t · (Pt − P̂t) + ŝt − st

}
− st · P̂t − ŝt · (Pt − P̂t) + st · Pt

]
=
{
21(bt = at)− 1

}[
(1− P̂t)

{
ŝ′t · (Pt − P̂t) + ŝt − st

}
+ (ŝt − st)(P̂t − Pt)

]
A second-order Taylor expansion of st{P(At = at | Ht)} yields the result. Specifically,

(1− P̂t)
{
ŝ′t · (Pt − P̂t) + ŝt − st

}
= (P̂t − 1)

[
ŝ′′t
2

(
P̂t − Pt

)2
+ o

{
(P̂t − Pt)

2
}]

D.2 Proposition 4 and Theorem 2

Now, we turn to establishing Proposition 4 and Theorem 2. As discussed in the body of the paper,
this can be established in two ways, by unwinding the error backwards-in-time or forwards-in-time.
We start with lemmas for the backwards-in-time bound, which is similar to Lemmas 5 & 6 in
Kennedy [2019]. We establish the result in full, for two reasons. First, for completeness. And
second, our analysis yields a different bound on the bias. Then, we establish the forwards-in-time
bound. This mirrors results in Díaz et al. [2023] and others, but is new because it accounts for
estimating the Qt.

In what follows, let m̃t(At,Ht) = E
{∑

bt+1
m̂t+1(bt+1,Ht+1)Q̂t+1(bt+1 | Ht+1) | At,Ht

}
as in

the body of the paper. In other words, m̃t is the true sequential regression function at timepoint t
where all the future information is estimated.

D.2.1 Backwards-in-time lemmas

Lemma 9. Under the setup of Proposition 4,

E{ϕ̂m(Z)} = m0 − m̂0

+

T∑
t=0

E

[{
t∏

s=0

r̂s(As | Hs)−
t∏

s=0

rs(As | Hs)

}
{m̃t(At,Ht)− m̂t(At,Ht)}

]
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+

T∑
t=1

E

{t−1∏
s=0

rs(As | Hs)

}∑
bt

m̂t(bt,Ht){Q̂t(bt | Ht)−Qt(bt | Ht)}


Proof. We have

E{ϕ̂m(Z)} = E

 0∑
t=T

{
t∏

s=0

r̂s(As | Hs)

}∑
bt+1

m̂t+1(bt+1,Ht+1)Q̂t+1(bt+1 | Ht+1)− m̂t(At,Ht)




= E

[
0∑

t=T

{
t∏

s=0

r̂s(As | Hs)

}
{m̃t(At,Ht)− m̂t(At,Ht)}

]

= E

[
0∑

t=T

{
t∏

s=0

r̂s(As | Hs)−
t∏

s=0

rs(As | Hs)

}
{m̃t(At,Ht)− m̂t(At,Ht)}

]

+ E

[
0∑

t=T

{
t∏

s=0

rs(As | Hs)

}
{m̃t(At,Ht)− m̂t(At,Ht)}

]
where the first equality follows by definition, the second by the definition of m̃t(At,Ht) and iterated
expectations on At,Ht, and the third by adding and subtracting

∏t
s=0 rs(As | Hs). On the RHS

of the final equality, the first line is second-order. Focusing on the final line in the above display,
notice first that the first and last summands in the overall sum can be isolated and the sum can be
re-written as

E

[
0∑

t=T

{
t∏

s=0

rs(As | Hs)

}
{m̃t(At,Ht)− m̂t(At,Ht)}

]

= E

[{
T∏
t=0

rs(As | Hs)

}
m̃T (AT ,HT )

]

+

0∑
t=T−1

E

[{
t∏

s=0

rs(As | Hs)

}
m̃t(At,Ht)−

{
t+1∏
s=0

rs(As | Hs)

}
m̂t+1(At+1,Ht+1)

]
− m̂0

The first term equals ψ because m̃T (AT ,HT ) = E(Y | AT ,HT ) and the last term is m̂0. Meanwhile,
the middle term in the above display simplifies because

E

[{
t+1∏
s=0

rs(As | Hs)

}
m̂t+1(At+1,Ht+1)

]

= E

{ t∏
s=0

rs(As | Hs)

}
E

∑
bt+1

m̂t+1(bt+1,Ht+1)Qt+1(bt+1 | Ht+1) | At,Ht




by iterated expectations on At,Ht. Combining like terms and the definition of m̃t yield
0∑

t=T−1

E

[{
t∏

s=0

rs(As | Hs)

}
m̃t(At,Ht)−

{
t+1∏
s=0

rs(As | Hs)

}
m̂t+1(At+1,Ht+1)

]

=

0∑
t=T−1

E

[{
t∏

s=0

rs(As | Hs)

}
E
{∑

bt+1

m̂t+1(bt+1,Ht+1){Q̂t+1(bt+1 | Ht+1)
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−Qt+1(bt+1 | Ht+1)} | At,Ht

}]

=
T∑
t=1

E

{t−1∏
s=0

rs(As | Hs)

}∑
bt

m̂t(bt,Ht){Q̂t(bt | Ht)−Qt(bt | Ht)}


where the last line follows by re-indexing the sum and iterated expectations on At,Ht.

Lemma 10. Under the setup of Proposition 4,

E{ϕ̂Q(Z)} = E

 1∑
t=T

{
t−1∏
s=1

r̂s(As | Hs)

}∑
bt

m̂t(bt,Ht)E{φ̂t(bt;At,Ht) | Ht}


+ E

 1∑
t=T

{
t−1∏
s=1

r̂s(As | Hs)−
t−1∏
s=1

rs(As | Hs)

}∑
bt

m̂t(bt,Ht)E{φ̂t(bt;At,Ht) | Ht}


+ E

 1∑
t=T

{
t−1∏
s=1

rs(As | Hs)

}∑
bt

m̂t(bt,Ht)
[
E{φ̂t(bt;At,Ht) | Ht}+ Q̂t(bt | Ht)−Qt(bt | Ht)

]
+ E

 1∑
t=T

{
t−1∏
s=1

rs(As | Hs)

}∑
bt

m̂t(bt | Ht)
{
Qt(bt | Ht)− Q̂t(bt | Ht)

}
Proof. We have

E{ϕ̂Q(Z)} = E

 1∑
t=T

{
t−1∏
s=1

r̂s(As | Hs)

}∑
bt

m̂t(bt,Ht)φ̂t(bt;At,Ht)


= E

 1∑
t=T

{
t−1∏
s=1

r̂s(As | Hs)

}∑
bt

m̂t(bt,Ht)E{φ̂t(bt;At,Ht) | Ht}


= E

 1∑
t=T

{
t−1∏
s=1

r̂s(As | Hs)−
t−1∏
s=1

rs(As | Hs)

}∑
bt

m̂t(bt,Ht)E{φ̂t(bt;At,Ht) | Ht}


+ E

 1∑
t=T

{
t−1∏
s=1

rs(As | Hs)

}∑
bt

m̂t(bt,Ht)
[
E{φ̂t(bt;At,Ht) | Ht}+ Q̂t(bt | Ht)−Qt(bt | Ht)

]
+ E

 1∑
t=T

{
t−1∏
s=1

rs(As | Hs)

}∑
bt

m̂t(bt | Ht)
{
Qt(bt | Ht)− Q̂t(bt | Ht)

}
where the second equality follows by adding zero several times.

Lemma 11. Under the setup of Proposition 4,

E{ϕ̂(Z)} = m0 − m̂0

+

T∑
t=0

E

[{
t∏

s=0

r̂s(As | Hs)−
t∏

s=0

rs(As | Hs)

}
{m̃t(At,Ht)− m̂t(At,Ht)}

]

38



+

T∑
t=1

E

{t−1∏
s=1

r̂s(As | Hs)−
t−1∏
s=1

rs(As | Hs)

}∑
bt

m̂t(bt,Ht)E{φ̂t(bt;At,Ht) | Ht}


+

T∑
t=1

E

{t−1∏
s=1

rs(As | Hs)

}∑
bt

m̂t(bt,Ht)
[
E{φ̂t(bt;At,Ht) | Ht}+ Q̂t(bt | Ht)−Qt(bt | Ht)

] .

Proof. The final lines in the display in the previous two lemmas cancel, yielding the result.

D.2.2 Forwards-in-time lemmas

Lemma 12. Under the setup of Proposition 4,

E{ϕ̂m(Z)} = m0 − m̂0

+

T∑
t=1

E

{t−1∏
s=0

r̂s(As | Hs)

}∑
bt

{m̂t(bt,Ht)−mt(bt,Ht)} r̂t(bt | Ht)
{
P(bt | Ht)− P̂(bt | Ht)

}
+

T∑
t=1

E

{t−1∏
s=0

r̂s(As | Hs)

}∑
bt

mt(bt,Ht)
{
Q̂t(bt | Ht)−Qt(bt | Ht)

}
Proof. We have

E{ϕ̂m(Z)} = E

 0∑
t=T

{
t∏

s=0

r̂s(As | Hs)

}∑
bt+1

m̂t+1(bt+1,Ht+1)Q̂t+1(bt+1 | Ht+1)− m̂t(At,Ht)




= E

[{
T∏

s=1

r̂s(As | Hs)

}
Y

]
− m̂0

+

T∑
t=1

E

{t−1∏
s=0

r̂s(As | Hs)

}∑
bt

m̂t(bt,Ht)Q̂t(bt | Ht)− m̂t(At,Ht)r̂t(At | Ht)




= E

[{
T∏

s=1

r̂s(As | Hs)

}
Y

]
− m̂0

+
T∑
t=1

E

{t−1∏
s=0

r̂s(As | Hs)

}∑
bt

{m̂t(bt,Ht)−mt(bt,Ht)} r̂t(bt | Ht)
{
P(bt | Ht)− P̂(bt | Ht)

}
+

T∑
t=1

E

{t−1∏
s=0

r̂s(As | Hs)

}∑
bt

mt(bt,Ht)Q̂t(bt | Ht)−mt(At,Ht)r̂t(At | Ht)




where the first line follows by definition, the second by rearranging the sum, and the third by adding
and subtracting mt. The second line in the final expression follows by taking iterated expectations
on Ht and gather terms. We do not manipulate the second term in the final expression above any
further because it appears in the final result. Focusing on the final term, we have

T∑
t=1

E

{t−1∏
s=0

r̂s(As | Hs)

}∑
bt

mt(bt,Ht)Q̂t(bt | Ht)−mt(At,Ht)r̂t(At | Ht)




39



=

T∑
t=1

E

{t−1∏
s=0

r̂s(As | Hs)

}∑
bt

mt(bt,Ht)
{
Q̂t(bt | Ht)−Qt(bt | Ht)

}
+

T∑
t=1

E

{t−1∏
s=0

r̂s(As | Hs)

}∑
bt

mt(bt,Ht)Qt(bt | Ht)

−mt(At,Ht)r̂t(At | Ht)


=

T∑
t=1

E

{t−1∏
s=0

r̂s(As | Hs)

}∑
bt

mt(bt,Ht)
{
Q̂t(bt | Ht)−Qt(bt | Ht)

}
+

T∑
t=1

E

({
t−1∏
s=0

r̂s(As | Hs)

}
[mt(At,Ht) {rt(At | Ht)− r̂t(At | Ht)}]

)

where the first equality follows by adding and subtracting Qt and the second equality by iterated
expectation on Ht and gathering terms, and the final line by adding and subtracting mt. The first
term in the final display appears in the result, so we manipulate them no further.

Combining the left over terms, we have

T∑
t=1

E

({
t−1∏
s=0

r̂s(As | Hs)

}
[mt(At,Ht) {rt(At | Ht)− r̂t(At | Ht)}]

)
+ E

[{
T∏

s=1

r̂s(As | Hs)

}
Y

]
− m̂0

= m0 −
T∑
t=1

E

[{
t−1∏
s=1

r̂s(As | Hs)

}
[{mt(At,Ht)−mt+1(At+1,Ht+1)rt+1(At+1 | Ht+1)} r̂t(At | Ht)]

)
− m̂0

= m0 − m̂0

where the first equality follows by taking the first term out of the initial sum, which equals m0

because it is E{m1(A1,H1)r1(A1 | H1)}, and adding E
[{∏T

s=1 r̂s(As | Hs)
}
Y
]

into the sum and
combining terms, and the second equality follows by iterated expectations on Ht. Combining all
the algebra above yields the result.

Lemma 13. Under the setup of Proposition 4,

E{ϕ̂Q(Z)} =

+

T∑
t=1

E

{t−1∏
s=0

r̂s(As | Hs)

}∑
bt

{m̂t(bt,Ht)−mt(bt,Ht)}E
{
φ̂t(bt;At,Ht) | Ht)

}
+

T∑
t=1

E

{t−1∏
s=0

r̂s(As | Hs)

}∑
bt

mt(bt,Ht)
{
Q̂t(bt | Ht)−Qt(bt | Ht) + E

{
φ̂t(bt;At,Ht) | Ht)

}}
+

T∑
t=1

E

{t−1∏
s=0

r̂s(As | Hs)

}∑
bt

mt(bt,Ht)
{
Qt(bt | Ht)− Q̂t(bt | Ht)

}
Proof. We have

E{ϕ̂Q(Z)} = E

 1∑
t=T

{
t−1∏
s=1

r̂s(As | Hs)

}∑
bt

m̂t(bt,Ht)φ̂t(bt;At,Ht)


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=

T∑
t=1

E

{t−1∏
s=1

r̂s(As | Hs)

}∑
bt

m̂t(bt,Ht)E{φ̂t(bt;At,Ht) | Ht}


=

T∑
t=1

E

{t−1∏
s=1

r̂s(As | Hs)

}∑
bt

{m̂t(bt,Ht)−mt(bt,Ht)}E{φ̂t(bt;At,Ht) | Ht}


+

T∑
t=1

E

{t−1∏
s=1

r̂s(As | Hs)

}∑
bt

mt(bt,Ht)
[
E{φ̂t(bt;At,Ht) | Ht}+ Q̂t(bt | Ht)−Qt(bt | Ht)

]
+

T∑
t=1

E

{t−1∏
s=1

r̂s(As | Hs)

}∑
bt

mt(bt,Ht)
{
Qt(bt | Ht)− Q̂t(bt | Ht)

}
where the second equality follows by adding zero several times.

Lemma 14. Under the setup of Proposition 4,

E{ϕ̂m(Z) + ϕ̂Q(Z)} = m0 − m̂0

+

T∑
t=1

E

{t−1∏
s=0

r̂s(As | Hs)

}∑
bt

{m̂t(bt,Ht)−mt(bt,Ht)} r̂t(bt | Ht)
{
P(bt | Ht)− P̂(bt | Ht)

}
+

T∑
t=1

E

{t−1∏
s=0

r̂s(As | Hs)

}∑
bt

{m̂t(bt,Ht)−mt(bt,Ht)}E
{
φ̂t(bt;At,Ht) | Ht)

}
+

T∑
t=1

E

{t−1∏
s=0

r̂s(As | Hs)

}∑
bt

mt(bt,Ht)
{
Q̂t(bt | Ht)−Qt(bt | Ht) + E

{
φ̂t(bt;At,Ht) | Ht)

}}
Proof. The final lines in the display in the previous two lemmas cancel, yielding the result.

Proof of Proposition 4

Proof. Lemmas 11, 7, and 8 imply that E{ϕ̂(Z) − ϕ(Z)} is a second-order product of errors in
nuisance functions. By the same argument, the functional satisfies a von Mises expansion with
second-order remainder term. The result follows by Kennedy et al. [2023, Lemma 2], combined
with the fact that V{ϕ(Z)} is bounded because the outcome has bounded variance and Qt(At|Ht)

P(At|Ht)
is bounded by assumption.

D.3 Theorem 2

Proof. The minimum in the result will follow by taking the minimum of the two bounds we prove
below.

Backwards-in-time:
The estimator is Pn{m̂0 + ϕ̂(Z)}. Because we have iid observations, the bias then satisfies

E
(
ψ̂ − ψ

)
= m̂0 + E{ϕ̂(Z)} − ψ ≡ E{ϕ̂(Z)}+ m̂0 −m0.
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Then, by Lemma 11,

E
(
ψ̂ − ψ

)
=

T∑
t=0

E

[{
t∏

s=0

r̂s(As | Hs)−
t∏

s=0

rs(As | Hs)

}
{m̃t(At,Ht)− m̂t(At,Ht)}

]

+
T∑
t=1

E

{t−1∏
s=1

r̂s(As | Hs)−
t−1∏
s=1

rs(As | Hs)

}∑
bt

m̂t(bt,Ht)E{φ̂t(bt;At,Ht) | Ht}


+

T∑
t=1

E

{t−1∏
s=1

rs(As | Hs)

}∑
bt

m̂t(bt,Ht)
[
E{φ̂t(bt;At,Ht) | Ht}+ Q̂t(bt | Ht)−Qt(bt | Ht)

]
Note that rt is bounded by the construction of st, while m̂t is bounded by assumption. Then, by
Hölder’s inequality, Lemmas 7 and 8, the triangle inequality, and Cauchy-Schwarz:

∣∣∣E(ψ̂ − ψ
)∣∣∣ . T∑

t=0

t∑
s=1

‖r̂s − rs‖‖m̃t − m̂t‖

+
T∑
t=1

t−1∑
s=1

‖r̂s − rs‖
(
‖P̂(at)− P(at)‖+ ‖P̂(bt)− P(bt)‖

)
+

T∑
t=1

(
‖P̂(at)− P(at)‖2 + ‖P̂(bt)− P(bt)‖2

)
.

We can streamline this decomposition further, as in the statement of the result. First, note that
r̂0 = r0 = 1 by definition. Second, with binary treatment,

∑
at∈{0,1} ‖P̂(at) − P(at)‖ . ‖π̂t − πt‖

where πt(Ht) ≡ P(At = 1 | Ht). Third, ‖r̂s − rs‖ . ‖π̂t − πt‖ by Taylor expansion. Then, the final
line above simplifies to

T∑
t=1

t∑
s=1

‖π̂s − πs‖‖m̂t − m̃t‖+
T∑
t=1

t−1∑
s=1

‖π̂s − πs‖‖π̂t − πt‖+
T∑
t=1

‖π̂t − πt‖2

=
T∑
t=1

t∑
s=1

‖π̂s − πs‖
(
‖m̂t − m̃t‖+ ‖π̂t − πt‖

)
.

Forwards-in-time:
By the same argument above and Lemma 14,

E
(
ψ̂ − ψ

)
=

T∑
t=1

E

{t−1∏
s=0

r̂s(As | Hs)

}∑
bt

{m̂t(bt,Ht)−mt(bt,Ht)} r̂t(bt | Ht)
{
P(bt | Ht)− P̂(bt | Ht)

}
+

T∑
t=1

E

{t−1∏
s=0

r̂s(As | Hs)

}∑
bt

{m̂t(bt,Ht)−mt(bt,Ht)}E
{
φ̂t(bt;At,Ht) | Ht)

}
+

T∑
t=1

E

{t−1∏
s=0

r̂s(As | Hs)

}∑
bt

mt(bt,Ht)
{
Q̂t(bt | Ht)−Qt(bt | Ht) + E

{
φ̂t(bt;At,Ht) | Ht)

}}
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Note that r̂t is bounded by the construction of st, while mt is bounded by assumption. Then, by
Hölder’s inequality, Lemmas 7 and 8, the triangle inequality, and Cauchy-Schwarz:

∣∣∣E(ψ̂ − ψ
)∣∣∣ . T∑

t=1

‖m̂t −mt‖‖P̂(bt)− P(bt)‖

+
T∑
t=1

‖m̂t −mt‖
(
‖P̂(at)− P(at)‖+ ‖P̂(bt)− P(bt)‖

)
+

T∑
t=1

(
‖P̂(at)− P(at)‖2 + ‖P̂(bt)− P(bt)‖2

)
.

We can streamline this decomposition further, as in the statement of the result. First, with binary
treatment,

∑
at∈{0,1} ‖P̂(at)−P(at)‖ . ‖π̂t−πt‖ where πt(Ht) ≡ P(At = 1 | Ht). Second, ‖r̂t−rt‖ .

‖π̂t − πt‖ by Taylor expansion. Then, the final line above simplifies to

∣∣∣E(ψ̂ − ψ
)∣∣∣ . T∑

t=1

(
‖m̂t −mt‖+ ‖π̂t − πt‖

)
‖π̂t − πt‖.

D.4 Corollary 1

Proof. We have

ψ̂ − ψ = m̂0 + Pn{ϕ̂(Z)} −m0

= (Pn − P){ϕ(Z)}+ (Pn − P){ϕ̂(Z)− ϕ(Z)}+ m̂0 + P{ϕ̂(Z)} −m0

= (Pn − P){ϕ(Z)}+ (Pn − P){ϕ̂(Z)− ϕ(Z)}+ E(ψ̂ − ψ).

where the first line follows by definition, the second by adding zero and because P{ϕ(Z)} = 0,
and the third line by the definition of the estimator ψ̂. The second term is oP(n−1/2) by Cheby-
shev’s inequality and the assumption that ‖ϕ̂− ϕ‖ = oP(1) (cf. Kennedy et al. [2020, Lemma 2]).
Meanwhile, the third term equals the bias term in Theorem 2. This is oP(n−1/2) by assumption.
Therefore, √

n

V{ϕ(Z)}
(ψ̂ − ψ) =

√
n

V{ϕ(Z)}
(Pn − P){ϕ(Z)}+ oP(1) N(0, 1)

by the central limit theorem and because V{ϕ(Z)} is bounded because Y has bounded variance
and rt is bounded.

Finally, note that σ̂2 p→ V{ϕ(Z)} because ‖ϕ̂ − ϕ‖ = oP(1). Therefore, the result follows by
Slutsky’s theorem.
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D.5 Lemma 1

Proof. The first result follows by repeated applications of iterated expectations. Notice that the
residual terms are mean zero by iterated expectations, leaving only the plug-in term. Then,
E {φt+1(bt+1;At+1,Ht+1) | Ht+1} = 0 by Lemma 7. And finally, by definition,

E

∑
bt+1

mt+1(bt+1,Ht+1)Qt+1(bt+1 | Ht+1) | At,Ht

 = mt(At,Ht).

The second result follows by induction. Throughout, we will omit arguments. Starting with the
final residual, when s = T , we have

E

{(
T∏

k=t+1

r̂k

)
(Y − m̂T ) | At,Ht

}
= E

{(
T−1∏

k=t+1

r̂k

)
(mT − m̂T ) r̂T | At,Ht

}

= E

{(
T−1∏

k=t+1

r̂k

)
(mT − m̂T ) (r̂T − rT ) | At,Ht

}

+ E

{(
T−1∏

k=t+1

r̂k

)
(mT − m̂T ) rT | At,Ht

}

where the first equality follows by iterated expectations on AT ,HT and the second by adding and
subtracting rT . The first term in the final expression appears in the result, so we manipulate it no
further. The next step is the induction step.

Consider the second term in the display above and the penultimate residual, when s = T − 1.
We have

E

{(
T−1∏

k=t+1

r̂k

)
(mT − m̂T ) rT | At,Ht

}
+ E


(

T−1∏
k=t+1

r̂k

)∑
bT

m̂T (Q̂T + φ̂T )− m̂T−1

 | At,Ht


= E

( T−1∏
k=t+1

r̂k

)∑
bT

(mT − m̂T )QT +
∑
bT

m̂T (Q̂T + φ̂T )− m̂T−1

 | At,Ht


= E

( T−1∏
k=t+1

r̂k

)∑
bT

m̂T

(
Q̂T + φ̂T −QT

)
+mT−1 − m̂T−1

 | At,Ht


= E


(

T−1∏
k=t+1

r̂k

)∑
bT

m̂T

(
Q̂T + φ̂T −QT

) | At,Ht


+ E

{(
T−2∏

k=t+1

r̂k

)
(mT−1 − m̂T−1) (r̂T−1 − rT−1) | At,Ht

}

+ E

{(
T−2∏

k=t+1

r̂k

)
(mT−1 − m̂T−1) rT−1 | At,Ht

}

where the first equality follows by gathering terms, the second by iterated expectations and the
definition of mT−1, and the third by adding and subtracting rT−1. The first and second lines in
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the final display appear in the statement of the result. The third line can be combined with the
earlier residual, for s = T − 2 using the step we just outlined. This argument can be continued all
the way to s = t+ 1.

For the final step, when s = t+ 1, we will be left with

E

(mt+1 − m̂t+1) rt+1 +
∑
bt+1

m̂t+1

(
Q̂t+1 + φ̂t+1

)
| At,Ht

−mt(At,Ht)

= E

∑
bt+1

(mt+1 − m̂t+1)Qt+1 +
∑
bt+1

m̂t+1

(
Q̂t+1 + φ̂t+1

)
| At,Ht

−mt(At,Ht)

= E

∑
bt+1

m̂t+1

(
Q̂t+1 + φ̂t+1 −Qt+1

)
| At,Ht


where the first equality follows by iterated expectations and the second by canceling
E
{∑

bt+1
mt+1Qt+1 | At,Ht

}
−mt(At,Ht) = 0.

D.6 Theorem 3

Proof. We omit arguments throughout. We have

E
(
ψ̂∗ − ψ

)
= E (m̂∗

0 −m0)

= E
(
P̂ ∗
1 (Z)−m0

)
=

T∑
t=1

E

(t−1∏
k=1

r̂k

)(
mt − m̂∗

t

)(
r̂t − rt

)
+

(
t−1∏
k=1

r̂k

)∑
bt

m̂∗
t

(
Q̂t + φ̂t −Qt

)
 .

where the first line follows by definition, the second by iid observations and the definition of m̂∗
0, and

the third by Lemma 1. Note that by construction r̂k is bounded and by assumption m̂∗
t is bounded.

Therefore, for the second summand in the final display above, Hölder’s inequality, Lemmas 7 and
8, the triangle inequality, a Taylor expansion for r̂t − rt, and Cauchy-Schwarz yield∣∣∣∣∣∣

T∑
t=1

E

(t−1∏
k=1

r̂k

)∑
bt

m̂∗
t

(
Q̂t + φ̂t −Qt

)
∣∣∣∣∣∣ .

T∑
t=1

‖π̂t − πt‖2.

Meanwhile, the first summand from the final line in the initial display above can be bounded
iteratively, which we consider next.

Arbitrary t:
Beginning with arbitrary t ∈ {1, . . . T}, we have

E

{(
t−1∏
k=1

r̂k

)(
mt − m̂∗

t

)(
r̂t − rt

)}
= E

{(
t−1∏
k=1

r̂k

)(
mt − m̃∗

t + m̃∗
t − m̂∗

t

)(
r̂t − rt

)}
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by adding and subtracting m̃∗
t . Hölder’s inequality, Taylor expansion, and Cauchy-Schwarz yields∣∣∣∣∣E

{(
t−1∏
k=1

r̂k

)(
m̃∗

t − m̂∗
t

)(
r̂t − rt

)}∣∣∣∣∣ . ‖m̂∗
t − m̃∗

t ‖‖π̂t − πt‖.

Meanwhile, for the remaining term,∣∣∣∣∣E
{(

t−1∏
k=1

r̂k

)(
mt − m̃∗

t

)(
r̂t − rt

)}∣∣∣∣∣ . ‖π̂t − πt‖
∣∣∣E (mt − m̃∗

t | At,Ht)
∣∣∣.

Because m̃∗
t = E{P̂ ∗

t+1(Z) | At,Ht} by definition, Lemma 1 dictates that

m̃∗
t −mt =

T∑
s=t+1

E

{(
s−1∏
k=1

r̂k

)(
ms − m̂∗

s

)(
r̂s − rs

)}
+ E

(s−1∏
k=1

r̂k

)∑
bs

m̂∗
s

(
Q̂s + φ̂s −Qs

)
 .

Recursion argument:
Because the argument above can be applied to arbitrary t, it can be applied recursively from t = T
backwards to t = 1. The additional doubly robust terms that arise from m∗

t −mt will be at least
as small (asymptotically) as terms that have already appeared in the error. This yields∣∣∣∣∣

T∑
t=1

E

[(
t−1∏
k=1

r̂k

)(
mt − m̂∗

t

)(
r̂t − rt

)]∣∣∣∣∣ .
T∑
t=1

‖m̂∗
t − m̃∗

t ‖‖π̂t − πt‖.

D.7 Corollary 2

Proof. This follows by the same argument as for Corollary 1.

E Proofs for Appendix A

E.1 Proposition 5

Proof. We proceed using the same proof technique as for Proposition 4. Specifically, we’ll show
that E{ϕ̂D(Z) + m̂0 −m0} is second order.

The algebra works similarly to the proof for the debiased pseudo-outcomes in Lemma 1. Starting
with the summand at the final timepoint, we have

E{ϕ̂D(Z)} = E

[(
T−1∏
s=1

r̂s(As | Hs)

){
Q̂T (1 | HT ) + φ̂T (1;AT ,HT )− m̂T−1(AT−1,HT−1)

}]

= E

[(
T−1∏
s=1

r̂s(As | Hs)

)
E
{
Q̂T (1 | HT ) + φ̂T (1;AT ,HT )−QT (1 | HT ) | AT−1,HT−1

}]

+ E

[(
T−1∏
s=1

r̂s(As | Hs)

)
{QT (1 | HT )− m̂T−1(AT−1,HT−1)}

]
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= E

[(
T−1∏
s=1

r̂s(As | Hs)

)
E
{
Q̂T (1 | HT ) + φ̂T (1;AT ,HT )−QT (1 | HT ) | AT−1,HT−1

}]

+ E

[(
T−2∏
s=1

r̂s(As | Hs)

)
(r̂T−1 − rT−1) {mT−1(AT−1 | HT−1)− m̂T−1(AT−1,HT−1)}

]

+ E

[(
T−2∏
s=1

r̂s(As | Hs)

)
rT−1(AT−1 | HT−1) {mT−1(AT−1 | HT−1)− m̂T−1(AT−1,HT−1)}

]
.

Notice that the first two lines in the final expression are second-order terms. Then, combining
the final term with the next summand in the efficient influence function, and omitting arguments,
yields

E

(T−2∏
s=1

r̂s

)rT−1 (mT−1 − m̂T−1) +
∑
bT−1

m̂T−1(Q̂T−1 + φ̂T−1)− m̂T−2




= E

(T−2∏
s=1

r̂s

)∑
bT−1

m̂T−1(Q̂T−1 + φ̂T−1 −QT−1) +mT−2 − m̂T−2


 .

Then, we can repeat this algebra t − 2 more times, and notice that the final m0 − m̂0 cancels
out so that E{ϕ̂D(Z)} + m̂0 − m0 is a second-order product of errors, because E{Q̂s(bs | Hs) +
φ̂(bs;As,Hs)−Qs(bs | Hs) | Hs} is a second-order product of errors, by Lemma 8.

E.2 Lemma 2

Proof. That the pseudo-outcome is unbiased follows by iterated expectations. Meanwhile, one can
analyze E{P̂ ∗

t+1(Z) | At,Ht} in the same manner as in the proof of Proposition 5, above, with the
exception that the product term over r̂ starts at s = t+ 1 rather than s = 1. By the final step one
has the second-order term in the statement of the result plus mt(At,Ht), which cancels with the
−mt(At,Ht) on the left-hand side of (15).
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