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Motivation and background



Provider profiling ≡ observational data with multi-valued
treatment

Provider profiling: compare healthcare providers in terms of
patient outcomes

Zi = {Xi ,Ai ,Yi} for i = 1, . . . , n with:
▶ X ∈ Rp: covariates (e.g., patient information)
▶ A ∈ {1, . . . , d}: multi-valued treatment (e.g., provider)
▶ Y ∈ R: outcome (e.g., mortality, 30-day unplanned

readmission)

Goal: “fair” comparisons of treatment efficacy
Method:

1 Estimate a (causal) parameter for each treatment a: ψa

2 Create league table from {ψ1, . . . , ψd}.
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TSMs are fair

Treatment-specific mean (TSM):

ψa = E(Y a) (average potential outcome if all took treatment a).

TSMs allow “fair” comparisons since the distribution of covariates is
held constant across treatments.

Same set of patients would attend provider a in E(Y a) as would
attend provider b in E(Y b) (all patients)

2 / 13



TSMs are fair

Treatment-specific mean (TSM):

ψa = E(Y a) (average potential outcome if all took treatment a).

TSMs allow “fair” comparisons since the distribution of covariates is
held constant across treatments.

Same set of patients would attend provider a in E(Y a) as would
attend provider b in E(Y b) (all patients)

2 / 13



TSMs are fair

Treatment-specific mean (TSM):

ψa = E(Y a) (average potential outcome if all took treatment a).

TSMs allow “fair” comparisons since the distribution of covariates is
held constant across treatments.

Same set of patients would attend provider a in E(Y a) as would
attend provider b in E(Y b) (all patients)

2 / 13



TSMs are fair

Treatment-specific mean (TSM):

ψa = E(Y a) (average potential outcome if all took treatment a).

TSMs allow “fair” comparisons since the distribution of covariates is
held constant across treatments.

Same set of patients would attend provider a in E(Y a) as would
attend provider b in E(Y b) (all patients)

2 / 13



TSMs are unreasonable target because of positivity violations

But: With many treatments, positivity violations
→ πa(X ) = P(A = a | X ) = 0 or ≈ 0

E(Y a) unidentifiable or estimators with have high variance.

10 largest providers in NY state and their patients
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Alternative: dynamic stochastic (“soft”) interventions, but
care is necessary

Dynamic stochastic intervention targeting treatment a:
For b ∈ {1, . . . , d}, define an interventional propensity score

qa(A = b | V ) (a function of V ⊆ X ).

The parameter targeting treatment a is

ψa = E
(
Y Qa

)
,

where Qa ∼ Categorical
{
qa(A = 1 | V ), . . . , qa(A = d | V )

}
.

These can adapt to positivity violations!

Issue: To respect positivity, may have non-zero probability of
attending many treatments, and so ψa − ψb can be driven by
performance at treatment c . Unfair?

More generally: what does fairness mean?
4 / 13



Alternative: dynamic stochastic (“soft”) interventions, but
care is necessary

Dynamic stochastic intervention targeting treatment a:
For b ∈ {1, . . . , d}, define an interventional propensity score

qa(A = b | V ) (a function of V ⊆ X ).

The parameter targeting treatment a is

ψa = E
(
Y Qa

)
,

where Qa ∼ Categorical
{
qa(A = 1 | V ), . . . , qa(A = d | V )

}
.

These can adapt to positivity violations!

Issue: To respect positivity, may have non-zero probability of
attending many treatments, and so ψa − ψb can be driven by
performance at treatment c . Unfair?

More generally: what does fairness mean?
4 / 13



Alternative: dynamic stochastic (“soft”) interventions, but
care is necessary

Dynamic stochastic intervention targeting treatment a:
For b ∈ {1, . . . , d}, define an interventional propensity score

qa(A = b | V ) (a function of V ⊆ X ).

The parameter targeting treatment a is

ψa = E
(
Y Qa

)
,

where Qa ∼ Categorical
{
qa(A = 1 | V ), . . . , qa(A = d | V )

}
.

These can adapt to positivity violations!

Issue: To respect positivity, may have non-zero probability of
attending many treatments, and so ψa − ψb can be driven by
performance at treatment c . Unfair?

More generally: what does fairness mean?
4 / 13



Alternative: dynamic stochastic (“soft”) interventions, but
care is necessary

Dynamic stochastic intervention targeting treatment a:
For b ∈ {1, . . . , d}, define an interventional propensity score

qa(A = b | V ) (a function of V ⊆ X ).

The parameter targeting treatment a is

ψa = E
(
Y Qa

)
,

where Qa ∼ Categorical
{
qa(A = 1 | V ), . . . , qa(A = d | V )

}
.

These can adapt to positivity violations!

Issue: To respect positivity, may have non-zero probability of
attending many treatments, and so ψa − ψb can be driven by
performance at treatment c . Unfair?

More generally: what does fairness mean?
4 / 13



Alternative: dynamic stochastic (“soft”) interventions, but
care is necessary

Dynamic stochastic intervention targeting treatment a:
For b ∈ {1, . . . , d}, define an interventional propensity score

qa(A = b | V ) (a function of V ⊆ X ).

The parameter targeting treatment a is

ψa = E
(
Y Qa

)
,

where Qa ∼ Categorical
{
qa(A = 1 | V ), . . . , qa(A = d | V )

}
.

These can adapt to positivity violations!

Issue: To respect positivity, may have non-zero probability of
attending many treatments, and so ψa − ψb can be driven by
performance at treatment c . Unfair?

More generally: what does fairness mean?
4 / 13



Fairness criterion



V -fairness criterion

In words, V -fairness: If a outperforms b in every stratum of V ,
then the parameters ψa and ψb must preserve that ordering (and
same for a = b and a < b)

For a subset V ⊆ X , parameters ψa = E(Y Qa) and ψb =
E(Y Qb) are V -fair if

Pc{E(Y a | V ) > E(Y b | V )} = 1 =⇒ ψa > ψb

and similarly for “<” and “=,” under all allowed counterfactual
distributions Pc .

TSMs satisfy this property, but many parameters do not.
▶ Indirect standardization in provider profiling
▶ Naive implementations of dynamic stochastic interventions

from causal inference
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Two intuitive properties ⇐⇒ V -fairness

How can we construct fair parameters?
Step 1: show its equivalence to two properties

Property 1: When targeting treatment a
▶ P{qa(A = a | V ) ≥ πa(V )} = 1

do not decrease target prop score
▶ P{qa(A = a | V ) > πa(V )} > 0

Increase target prop. score for positive-prob set
▶ P{qa(A = b | V ) ≤ πb(V )} = 1 for all b ̸= a

do not increase non-target prop scores

Property 2: When comparing ψa and ψb

qa(A = c | V ) = qb(A = c | V ) ∀ c /∈ {a, b}.
Make non-target prop scores equal

Lemma: {ψa}da=1 facilitate pairwise V -fairness if and only if
(Property 1 holds for all a) & (Property 2 holds for all a, b pairs).
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Positivity



Minimum necessary positivity

What about positivity?
Some positivity is required.

Theorem: Let

CV =
{
v : P{πa(X ) > 0 | V = v} = 1 ∀ a

}
.

denote the set of subjects that have non-zero prop score for every
treatment.

Then, P(CV ) > 0 is necessary for a set of fair parameters

{ψa}da=1 to be identifiable

In other words, there has to be at least some subset of subjects
with non-zero probability for each treatment.
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Constructing fair and
identifiable parameters



Examples from properties 1 and 2 and min. positivity theorem

Properties 1 and 2: f : [0, 1] → [0, 1] such that f (x) ≤ x
Any shift works; e.g., f (x) = 0.9x .

qa(A = b | V ) = 1(b ̸= a)f {πb(V )}︸ ︷︷ ︸
Shift prob. down at b ̸=a

+1(b = a)
[
1 −

∑
b ̸=a

f {πb(V )}
]

︸ ︷︷ ︸
Shift prob. up at target b=a

1 Property 1 satisfied directly
2 Property 2: qa(A = c | V ) = qb(A = c | V ) = f {πc(V )}

Necessary positivity: Require P(CV ) > 0. Only intervene on this set.

qa(A = b | V ) =

No intervention︷ ︸︸ ︷
1(V /∈ CV )πb(V )

+ 1(V ∈ CV )

(
1(b ̸= a)f {πb(V )}+ 1(b = a)

[
1 −

∑
b ̸=a

f {πb(V )}
])

︸ ︷︷ ︸
Intervention inside trimmed set
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Properties 1 and 2: f : [0, 1] → [0, 1] such that f (x) ≤ x
Any shift works; e.g., f (x) = 0.9x .

qa(A = b | V ) = 1(b ̸= a)f {πb(V )}︸ ︷︷ ︸
Shift prob. down at b ̸=a

+1(b = a)
[
1 −

∑
b ̸=a

f {πb(V )}
]

︸ ︷︷ ︸
Shift prob. up at target b=a

1 Property 1 satisfied directly
2 Property 2: qa(A = c | V ) = qb(A = c | V ) = f {πc(V )}

Necessary positivity: Require P(CV ) > 0. Only intervene on this set.

qa(A = b | V ) =

No intervention︷ ︸︸ ︷
1(V /∈ CV )πb(V )

+ 1(V ∈ CV )

(
1(b ̸= a)f {πb(V )}+ 1(b = a)

[
1 −

∑
b ̸=a

f {πb(V )}
])

︸ ︷︷ ︸
Intervention inside trimmed set

8 / 13



This construction may be of independent interest

1 This construction generalizes to any shift intervention by
choosing f (x); includes, e.g., incremental propensity score
shift [Kennedy, 2019] and a risk ratio multiplication [Wen
et al., 2023]

2 Generalizes dynamic stochastic interventions to un-ordered
multi-valued treatment and allows us to target specific
treatments.
→ Future work: target specific continuous treatment values
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Identification and estimation



Identification & a doubly robust-style estimator

Under consistency, exchangeability, and P(CV ) > 0:

ψa = E(Y Qa) = E
[ d∑
b=1

E{µb(X ) | V }qa(A = b | V )
]
.

where µb(X ) = E(Y | A = b,X ).

Issue 1: Plug-in estimators have bad properties.
Solution: Use doubly robust estimator

Issue 2: must estimate 1(V ∈ CV ). This is difficult and precludes
use of doubly robust or double ML estimators.
Solution: use smooth approximation S(V ∈ CV ) for indicator.

Doubly robust-style estimator: ψ̂a = 1
n

∑n
i=1 φ̂a(Zi ), where φa

is efficient influence function of ψa.

Theorem: If
∑

b ∥π̂b−πb∥
(
∥µ̂b−µb∥+∥π̂b−πb∥

)
= oP(n

−1/2),
then √

n(ψ̂a − ψa)⇝ N
(
0,V{φa(Z )}

)
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Data analysis



Data

Setting: 10 largest dialysis providers in NY

▶ X : patient demographics, clinical characteristics, etc.
▶ A: dialysis provider
▶ Y : 30-day unplanned readmission (binary)

We constructed qa(A = b | X ) to be X -fair but only require mild
positivity on a trimmed subset of X .

We estimated the smooth trimmed TSMs across the 10 providers.
These facilitate fair comparisons of all the providers.
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Comparison vs. provider VIII

Provider VIII had the highest readmission rate

Provider Diff. w.r.t. VIII 95% CI

I 0.019 [-0.006, 0.044]
II 0.027 [0.004, 0.050]
III 0.007 [-0.020, 0.033]
IV 0.012 [-0.013, 0.036]
V 0.009 [-0.022, 0.040]
VI 0.031 [0.002, 0.060]
VII 0.014 [-0.014, 0.043]
IX 0.013 [-0.019, 0.046]
X 0.029 [-0.003, 0.061]

Differences relative to VIII (highest readmission rate) show that
II and VI appear significantly lower, while others are inconclusive.
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Discussion



Recap:
1 Proposed a fairness criterion for comparing treatment efficacy
2 Established fairness criterion equivalent to two intuitive

properties
3 Established minimum positivity condition for identification
4 Constructed fair and identifiable parameters
5 Constructed doubly robust-style efficient estimators
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V -fairness

Criterion. (V -fairness) For a covariate subset V ⊆ X , the
parameters ψa = E(Y Qa) and ψb = E(Y Qb) are V -fair if they
satisfy:

Pc{E(Y a | V ) > E(Y b | V )} = 1 =⇒ ψa > ψb, (1)

Pc{E(Y a | V ) = E(Y b | V )} = 1 =⇒ ψa = ψb, and (2)

Pc{E(Y a | V ) < E(Y b | V )} = 1 =⇒ ψa < ψb (3)

for all counterfactual distributions Pc in the counterfactual model.

▶ This is not an assumption. It is a desideratum; if we invoke
the LHS, then the RHS holds.

▶ The relationship does not depend on E(Y c | V ) for c /∈ {a, b}.
▶ The set of TSMs satisfy V -fairness for all V ⊆ X . If {ψa}da=1

do also and LHS of (1), (2), or (3) hold, then {ψa}da=1 have
same ordering as TSMs.
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V -fairness: contrapositives give further intuition

Pc{E(Y a | V ) > E(Y b | V )} = 1 =⇒ ψa > ψb,

Pc{E(Y a | V ) = E(Y b | V )} = 1 =⇒ ψa = ψb, and

Pc{E(Y a | V ) < E(Y b | V )} = 1 =⇒ ψa < ψb

ψa ≤ ψb =⇒ Pc{E(Y a | V ) > E(Y b | V )} < 1

ψa ̸= ψb =⇒ Pc{E(Y a | V ) = E(Y b | V )} < 1

ψa ≥ ψb =⇒ Pc{E(Y a | V ) < E(Y b | V )} < 1

V coarser → more desirable fairness condition
→ e.g., V = ∅: ψa ≤ ψb =⇒ E(Y a) ≤ E(Y b)1

V more granular → less desirable fairness condition
→ e.g., V = X : ψa ≤ ψb =⇒ Pc{E(Y a | X ) > E(Y b | X )} < 1

1Combining three contrapositives yields equivalence:
ψa < ψb ⇐⇒ E(Y a) < E(Y b), etc.
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V -fairness: other observations

Pc{E(Y a | V ) > E(Y b | V )} = 1 =⇒ ψa > ψb

▶ Roessler et al. [2021] provided five axioms for fairness. Our
criterion is explicitly counterfactual and simpler (one
condition).

▶ This is not algorithmic fairness.
▶ Other antecedents, like P(Y a = Y b) = 1 or

P(Y a < y) < P(Y b < y) for all y ∈ R, could be considered,
but conditional TSMs seemed most natural

▶ We might want to strengthen the condition to equivalence
statement ( ⇐⇒ ) for non-empty V
▶ Not possible because RHS involves averages, E(Y Qa). Easy to

construct counter-examples such that ψa > ψb but
Pc{E(Y a | V ) > E(Y b | V )} < 1.

▶ However, with conditional curves, equivalence is possible! I.e.,
ψ(·) : Pc → (V → R) is a conditional map. [Future work...]
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Two properties that are
equivalent to fairness



Unintuitive fairness criterion Intuitive properties

Let {qa(A = b | V )}db=1 denote the interventional propensity scores
targeting treatment a.

Property 1:

▶ Do not decrease target propensity score
P{qa(A = a | V ) ≥ πa(V )} = 1

▶ Increase target prop. score for positive-prob set
P{qa(A = a | V ) > πa(V )} > 0

▶ Do not increase non-target prop. scores
P{qa(A = b | V ) ≤ πb(V )} = 1 for all b ̸= a

Let {qa(A = c | V )}dc=1 and {qb(A = c | V )}dc=1 denote
interventional propensity scores target treatments a and b.

Property 2. Propensity scores equal at non-target treatments

P{qa(A = c | V ) = qb(A = c | V )} = 1 for all c /∈ {a, b}.
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Equivalence between V -fairness and properties 1 and 2

Lemma 1. Let
{
ψa

}d
a=1 =

{
E(Y Qa)

}d
a=1 denote a set of pa-

rameters defined by dynamic stochastic interventions that vary
with covariates V ⊆ X and target treatments 1, . . . , d , respec-
tively.

The set satisfies V -fairness for all (a, b) ∈ {1, . . . , d}×{1, . . . , d}
if and only if it satisfies property 1 separately for all a ∈ {1, . . . , d}
and property 2 for all (a, b) ∈ {1, . . . , d} × {1, . . . , d}.

This is useful because properties 1 and 2 are much more
intuitive.
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Properties 1 and 2 suggest examples

Property 1:
▶ Do not decrease target propensity score
▶ Increase target prop. score for positive-prob
▶ Do not increase non-target prop. scores

Property 2:
▶ Equal propensity scores for non-target treatments

For f satisfying f (x) < x ,

ρa(A = b | V ) = 1(b ̸= a)︸ ︷︷ ︸
non-target

f {πb(V )}︸ ︷︷ ︸
decrease

+1(b = a)︸ ︷︷ ︸
target

[
1 −

∑
b ̸=a

f {πb(V )}
]

︸ ︷︷ ︸
increase

For property 2, notice that

ρa(A = c | V ) = ρb(A = c | V ) = f {πc(V )} for c /∈ {a, b}
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Properties 1 and 2 suggest examples

For f satisfying f (x) < x ,

ρa(A = b | V ) = 1(b ̸= a)f {πb(V )}+ 1(b = a)
[
1 −

∑
b ̸=a

f {πb(V )}
]

Examples of f (·):
▶ Multiplicative shift: f (x) = δx , δ < 1,
▶ Exponential tilt: f (x) = δx

δx+1−x , δ < 1,
▶ TSM: f (x) = 0.

By the way... This addresses complications from un-ordered
treatment! Intuition: explicitly shift away from non-target
treatments and implicitly towards target. This construction
works for binary, multi-valued, and continuous treatment. [Fu-
ture work: target approx. dose-response curve]
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Minimum necessary positivity



The minimum necessary positivity assumption

Theorem 1. Let
{
ψa

}d
a=1 =

{
E(Y Qa)

}d
a=1 and interventional

propensity scores vary with V and let

CV = {v : P {πa(X ) > 0 | V = v} = 1 ∀ a ∈ {1, . . . , d}} (4)

denote the set of subjects who have a non-zero probability of
receiving every treatment.

Then, P(CV ) > 0 is necessary for the parameters to satisfy V -
fairness and be identifiable simultaneously.

This does not depend on the parameters! It applies to any set of
parameters that would satisfy V -fairness and be identifiable.
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Trade-off: fairness versus positivity

Theorem 1 (P(CV ) > 0) can also be stated as

E

(
d∏

a=1

1
[
P{πa(X ) > 0 | V } = 1

])
> 0 (5)

This framing can help illustrate trade-off between fairness and
minimum positivity

V = ∅:
▶ Most desirable fairness condition;
▶ (5) ≡ weak positivity (strong assumption)

V = X :
▶ Least desirable fairness condition
▶ (5) ≡ E

[∏d
a=1 1

{
πa(X ) > 0

}]
> 0. (weakest positivity

assumption)
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Identifiable examples and
smooth approximations



Properties 1 & 2 plus minimum positivity suggest examples

Properties 1 and 2:

ρa(A = b | V ) = 1(b ̸= a)f {πb(V )}+ 1(b = a)
[
1 −

∑
b ̸=a

f {πb(V )}
]

Necessary positivity:
→ There must exist a set C ∈ V for which weak positivity holds.
→ “Trimmed” set:

CV = {v : P {πa(X ) > 0 | V = v} = 1 ∀ a ∈ {1, . . . , d}}

Only intervene on this set.

qa(A = b | V ) =

No intervention︷ ︸︸ ︷
1(V /∈ CV )πb(V )+1(V ∈ CV )ρa(A = b | V )︸ ︷︷ ︸

Intervention inside trimmed set

13 / 13



Focusing on trimmed set agrees with prior intuition from
matching and balancing

▶ In matching and balancing weights literature, prior work has
emphasized focusing on group with non-zero probability of
attending each treatment, arguing this facilitates useful/fair
comparisons between treatments [Silber et al., 2014, 2020,
Li and Li, 2019]

▶ Our work formalizes how/why this is fair

▶ Also suggests we could use state-of-the-art matching
methods to construct 1(V ∈ CV ) [Bennett et al., 2020, Sävje
et al., 2021]

▶ We focus on smooth approximation of trimmed set instead
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Smooth approximations of the trimmed set

qa(A = b | V ) = 1(V /∈ CV )πb(V ) + 1(V ∈ CV )ρa(A = b | V )

The indicator 1(V ∈ CV ) is non-smooth, like in trimming
Solution: smooth approximation

1(V ∈ CV ) = 1

[
d∏

b=1

P {πb(X ) > 0 | V } = 1

]
≈

d∏
b=1

P {πb(X ) > 0 | V }

=
d∏

b=1

E [1 {πb(X ) > 0} | V ]

≈
d∏

b=1

E [s{πb(X )} | V ] =: S(V ∈ CV )

where s{πb(X )} approximates 1{πb(X ) > 0}.

qa(A = b | V ) = {1 − S(V ∈ CV )}πb(V ) + S(V ∈ CV )ρa(A = b | V )
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Example: s(x) = 1 − exp(−kx), k = 100

▶ Constraint that s(0) = 0 appears to be new (compared to prior
trimming literature), and suggests novel smooth functions.

▶ It allows smooth parameters to be fair and identifiable
▶ We analyze generic s(·) satisfying s(0) = 0
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Identification and estimation



Identification and plug-in estimator

Causal parameter: ψa = E
(
Y Qa

)
where

qa(A = b | V ) =
{
1 − S(V ∈ CV )

}
πb(V ) + S(V ∈ CV )ρa(A = b | V )

Suppose consistency, exchangeability, and the necessary positivity
assumption (P(CV ) > 0) hold. Then, g-formula:

ψa = E

[
d∑

b=1

E
{
µb(X ) | V

}
qa(A = b | V )

]
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Plug-in estimator can be biased or have slower-than-
√
n

convergence

Identification suggests the plug-in estimator

ψ̂a = Pn

[
d∑

b=1

Ê{µ̂b(X ) | V }q̂a(A = b | V )

]

▶ Pn{f (Z )} = 1
n

∑n
i=1 f (Zi ),

▶ µ̂b(X ) regresses Y ∼ {X ,1(A = b)},
▶ Ê{µ̂b(X ) | V } regresses µ̂b(X ) ∼ V , and
▶ q̂a(A = b | V ) plugs estimated propensity scores into the

definition of qa(A = b | V )

▶ With mis-specified parametric models, biased
▶ With nonparametric models, slower-than-

√
n convergence
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Theorem 2. Efficient influence function of ψa when V = X

ψa = E
{∑d

b=1 µb(X )qa(A = b | X )
}

and
qa(A = b | X ) = {1−S(X ∈ CX )}πb(X )+S(X ∈ CX )ρa(A = b | X )

φa(Z ) =
d∑

b=1

(
µb(X )qa(A = b | X )

+

[
1(A = b)

πb(X )
{Y − µb(X )}

]
qa(A = b | X ) + µb(X )φqa(Z ; b)

)
where
φqa(Z ; b) = φS(Z ){ρa(A = b | X )− πb(X )}+ S(X ∈ CX )φρa(Z ; b)

+
{

1 − S(X ∈ CX )
}{

1(A = b)− πb(X )
}
,

φρa(Z ; b) = 1(b ̸= a)f ′{πb(X )}{1(A = b)− πb(X )}

− 1(b = a)

[∑
b ̸=a

f ′{πb(X )}{1(A = b)− πb(X )}
]
, and

φS(Z ) =
d∑

b=1

(
s ′{πb(X )}{1(A = b)− πb(X )}

) d∏
c ̸=b

s{πc(X )}.
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Doubly robust-style estimator

Suppose {π̂b, µ̂b}db=1 constructed on independent sample.
Construct an estimator as

ψ̂a = Pn{φ̂a(Z )}.

Can also use cross-fitting:
▶ Split data into K folds (5 or 10 common)
▶ Train µ̂, π̂ on K − 1 folds
▶ Evaluate on K th fold.
▶ Cycle folds and repeat for full-sample efficiency
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Theorem 3. Doubly robust-style estimator second order bias

The DR estimator bias satisfies (under some conditions)

∣∣∣E(
ψ̂a − ψa

)∣∣∣ ≲
d∑

b=1

∣∣∣∣E [
{π̂b(X )− πb(X )} {µ̂b(X )− µb(X )} q̂a(A = b | X )

π̂b(X )

]∣∣∣∣ Bias with q known

+
d∑

b=1

∥µ̂b − µb∥

[
d∑

c=1

∥π̂c − πc∥

]
resid. prod. q̂, µ̂

+

{
d∑

b=1

∥π̂b − πb∥

}{
d∑

c=1

∥π̂c − πc∥

}
resid. prod. ρ̂a, Ŝ

+
d∑

b ̸=a

∥π̂b − πb∥2 DR estimator ρa

+ d

{
d∑

b=1

∥π̂b − πb∥2 +
d∑

b=1

∑
c<b

∥π̂b − πb∥ ∥π̂c − πc∥

}
DR estimator S
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What if we know the trimmed set?

When the trimmed set is known, then
qa(A = b | X ) = 1(X ∈ CX )ρa(A = b | X )+1(X /∈ CX )πb(X )∣∣∣E(
ψ̂a − ψa

)∣∣∣ ≲
d∑

b=1

∣∣∣∣E [
{π̂b(X )− πb(X )} {µ̂b(X )− µb(X )} q̂a(A = b | X )

π̂b(X )

]∣∣∣∣ Bias with q known

+
d∑

b=1

∥µ̂b − µb∥

[
1(b ̸= a)∥f ′(πb)(π̂b − πb)∥

+ 1(b = a)

{∑
b ̸=a

∥f ′(πb)(π̂b − πb)∥
}]

resid. prod. ρ̂, µ̂

+
d∑

b ̸=a

∥∥∥f ′′(πb)
1/2(π̂b − πb)

∥∥∥2
DR estimator ρa

Similar type of bias term to more typical dynamic stochastic
interventions (e.g., IPSIs)
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What if we know the interventional propensity scores?

E.g., for trimmed TSMs, f (π) = 0 for all π.

∣∣∣E(
ψ̂a − ψa

)∣∣∣ ≲
d∑

b=1

∣∣∣∣E [
{π̂b(X )− πb(X )} {µ̂b(X )− µb(X )} q̂a(A = b | X )

π̂b(X )

]∣∣∣∣ Bias with q known

+
d∑

b=1

(∥µ̂b − µb∥+ ∥π̂b − πb∥)

{
d∑

c=1

∥π̂c − πc∥

}
resid. prod. q̂, µ̂

+ d

{
d∑

b=1

∥π̂b − πb∥2 +
d∑

b=1

∑
c<b

∥π̂b − πb∥ ∥π̂c − πc∥

}
DR estimator S

S(X ∈ CX ) =
∏d

b=1 s{πb(X )} involves products of propen-
sity scores: yields the double sums and outer factor d .

13 / 13



What if we know the trimmed set and the interventional
propensity scores?

If both the trimmed set and f (π) were known, then
▶ the estimand simplifies to

ψa = E{µa(X )1(X ∈ CX )}+ E{Y 1(X /∈ CX )}

▶ the doubly robust-style estimator is

ψ̂a := Pn

([
1(A = a)

π̂a(X )
{Y − µ̂a(X )}+ µ̂a(X )

]
1(X ∈ CX ) + Y 1(X /∈ CX )

)
Canonically doubly robust bias (over CX ):∣∣∣E(ψ̂a − ψa

)∣∣∣ ≲ E [{π̂a(X )− πa(X )}{µ̂a(X )− µa(X )}1 (X ∈ CX )]
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Normal limiting distribution

Under conditions of main theorem, suppose also that∑d
a=1 E{φ̂a(Z )− φa(Z )} = oP(1) and

d∑
a=1

d∑
b=1

∥µ̂a − µa∥∥π̂b − πb∥+ d
d∑

a=1

∑
b≤a

∥π̂a − πa∥∥π̂b − πb∥ = oP(n
−1/2).

Then,

√
n

ψ̂1 − ψ1
...

ψ̂d − ψd

⇝ N(0,Σ)

where eTi Σej = cov{φi (Z ), φj(Z )}.

▶
√
n convergence to Gaussian possible under n−1/4 rate

conditions on nuisance estimators

▶ Many typical analyses in provider profiling follow by the delta
method
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Data analysis



Data

10 largest providers (by number of claims) in NY state

▶ X : physical attributes, social factors, clinical characteristics,
demographic info

▶ A: the provider attended
▶ Y : 30-day unplanned readmission (binary)

We considered parameters that are X -fair (so, weak fairness
condition) but require only mild positivity assumption for ID.

Constructed S(X ∈ CV ) using s(x) = 1 − exp(−100x).

Five interventions: multiplicative shifts and exponential tilts with
δ ∈ {0.5, 0.9}, and trimmed TSMs.
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Point estimates and 95% CIs
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What about compared to provider VIII?
(which had the worst/highest readmission rate)

Anonymized
provider
identifier

Difference between 30-day
readmission rate for

provider VIII and this
provider

95% confidence
interval

I 0.019 [-0.006, 0.044]
II 0.027 [0.004, 0.050]
III 0.007 [-0.020, 0.033]
IV 0.012 [-0.013, 0.036]
V 0.009 [-0.022, 0.040]
VI 0.031 [0.002, 0.060]
VII 0.014 [-0.014, 0.043]
IX 0.013 [-0.019, 0.046]
X 0.029 [-0.003, 0.061]
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Future work



Future work

▶ We formalized the intuition that it’s only fair to compare
treatments when subjects could reasonably take both.
Therefore, methods for partitioning the covariate/treatment
space could be useful.
▶ Intuition suggests, e.g., partition along state lines. Perhaps

data-adaptive approach could be better.
▶ Dependence on π̂ and d is disappointing, but makes sense

given the construction of S(X ∈ CX ).
▶ Next step: figure out how to dodge dimension dependence.

Positivity violations suggest there is a sparsity phenomenon,
so may be able to construct better estimators leveraging that.

▶ Alternatively/additionally, consider unfair interventions that
are easier to estimate, and quantify how unfair they are.

▶ Heterogeneity: inherently interesting, and could satisfy
stronger/different fairness condition.
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Smooth approximation

If s(x) = 1 − exp(−knx) where kn can vary with sample size,

∣∣∣E(ψ̂a − ψa

)∣∣∣ ≲ d∑
b=1

d∑
c=1

kn∥µ̂b−µb∥∥π̂c−πc∥+dk2
n

(
∥π̂b−πb∥∥π̂c−πc∥

)
.
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Allowing parameter to depend on observed treatment

Consider E(Y Q | A = a) where
Q ∼ Categorical

{
q(A = 1 | X ), . . . , q(A = d | X )

}
. Then,

E(Y Q | A = a) = E
{
E(Y Q | A = a,X ) | A = a

}
= E

{∑
b

E(Y b | A = a,X )q(A = b | X ) | A = a

}

=

∫
X

∑
b

E(Y b | X = x)q(A = b | X = x)dP(X = x | A = a)

=

∫
X

∑
b

E(Y b | X = x)q(A = b | X = x)
πa(X = x)

P(A = a)
dP(x)

= E
{
E(Y b | X )

q(A = b | X )πa(X )

P(A = a)

}
= E(Y Q′

),Q ′ ∼ Categorical
{
q(A = 1 | X )πa(X )

P(A = a)
...,

q(A = d | X )πa(X )

P(A = a)

}
by (1) IE, (2) definition of intervention, (3) exchangeability, (4) Bayes’,
(5) definition of expectation, (6) re-defining intervention.
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Margin conditions

Instead of smooth approximations, can use margin conditions [Levis
et al., 2024, Kennedy et al., 2020, Audibert and Tsybakov, 2007,
Luedtke and van der Laan, 2016].

α > 0 such that for all a ∈ {1, . . . , d} and any t ≥ 0,

P {|πa(X )− 0| ≤ t} ≲ tα

However, this is not useful because it enforces P{πa(X ) = 0} = 0
and, when applied across all a ∈ {1, . . . , d}, imposes weak
positivity.
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