Fair comparisons of causal parameters with many treatments and positivity violations

Alec McClean, Yiting Li, Sunjae Bae, Mara A. McAdams-DeMarco, Iván Díaz, and Wenbo Wu

New York University Grossman School of Medicine

https://arxiv.org/abs/2410.13522

Motivation and background

Provider profiling: compare healthcare providers in terms of patient outcomes

- $Z_i = \{X_i, A_i, Y_i\}$ for i = 1, ..., n with:
 - $X \in \mathbb{R}^{p}$: covariates (e.g., patient information)
 - $A \in \{1, \dots, d\}$: multi-valued treatment (e.g., provider)
 - Y ∈ ℝ: outcome (e.g., mortality, 30-day unplanned readmission)

- Istimate a (causal) parameter for each treatment a: ψ_a
- 2 Create league table from $\{\psi_1, \ldots, \psi_d\}$.

Provider profiling: compare healthcare providers in terms of patient outcomes

- $Z_i = \{X_i, A_i, Y_i\}$ for i = 1, ..., n with:
 - $X \in \mathbb{R}^{p}$: covariates (e.g., patient information)
 - ▶ $A \in \{1, ..., d\}$: multi-valued treatment (e.g., provider)
 - ▶ $Y \in \mathbb{R}$: outcome (e.g., mortality, 30-day unplanned readmission)

- Istimate a (causal) parameter for each treatment a: ψ_a
- 2 Create league table from $\{\psi_1, \ldots, \psi_d\}$.

Provider profiling: compare healthcare providers in terms of patient outcomes

- $Z_i = \{X_i, A_i, Y_i\}$ for $i = 1, \dots, n$ with:
 - $X \in \mathbb{R}^{p}$: covariates (e.g., patient information)
 - ▶ $A \in \{1, ..., d\}$: multi-valued treatment (e.g., provider)
 - Y ∈ ℝ: outcome (e.g., mortality, 30-day unplanned readmission)

- lacksquare Estimate a (causal) parameter for each treatment a: ψ_a
- 2 Create league table from $\{\psi_1, \ldots, \psi_d\}$.

Provider profiling: compare healthcare providers in terms of patient outcomes

- $Z_i = \{X_i, A_i, Y_i\}$ for i = 1, ..., n with:
 - ▶ $X \in \mathbb{R}^{p}$: covariates (e.g., patient information)
 - ▶ $A \in \{1, ..., d\}$: multi-valued treatment (e.g., provider)
 - Y ∈ ℝ: outcome (e.g., mortality, 30-day unplanned readmission)

- $\textbf{O} \quad \text{Estimate a (causal) parameter for each treatment } \textbf{a}: \ \psi_{\textbf{a}}$
- 2 Create league table from $\{\psi_1, \ldots, \psi_d\}$.

 $\psi_a = \mathbb{E}(Y^a)$ (average potential outcome if all took treatment *a*).

TSMs allow "fair" comparisons since the distribution of covariates is held constant across treatments.

 $\psi_a = \mathbb{E}(Y^a)$ (average potential outcome if all took treatment *a*).

TSMs allow "fair" comparisons since the distribution of covariates is held constant across treatments.

 $\psi_a = \mathbb{E}(Y^a)$ (average potential outcome if all took treatment *a*).

TSMs allow "fair" comparisons since the distribution of covariates is held constant across treatments.

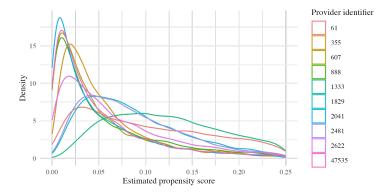
 $\psi_a = \mathbb{E}(Y^a)$ (average potential outcome if all took treatment *a*).

TSMs allow "fair" comparisons since the distribution of covariates is held constant across treatments.

TSMs are unreasonable target because of positivity violations

But: With many treatments, positivity violations $\rightarrow \pi_a(X) = \mathbb{P}(A = a \mid X) = 0$ or ≈ 0

 $\mathbb{E}(Y^a)$ unidentifiable or estimators with have high variance.

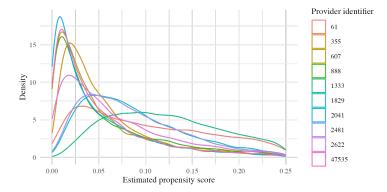


10 largest providers in NY state and their patients

TSMs are unreasonable target because of positivity violations

But: With many treatments, positivity violations $\rightarrow \pi_a(X) = \mathbb{P}(A = a \mid X) = 0$ or ≈ 0

 $\mathbb{E}(Y^a)$ unidentifiable or estimators with have high variance.

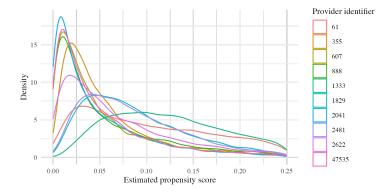


10 largest providers in NY state and their patients

TSMs are unreasonable target because of positivity violations

But: With many treatments, positivity violations $\rightarrow \pi_a(X) = \mathbb{P}(A = a \mid X) = 0$ or ≈ 0

 $\mathbb{E}(Y^a)$ unidentifiable or estimators with have high variance.



10 largest providers in NY state and their patients

Dynamic stochastic intervention targeting treatment *a*: For $b \in \{1, ..., d\}$, define an *interventional propensity score*

 $q_a(A = b \mid V)$ (a function of $V \subseteq X$).

The parameter targeting treatment *a* is

$$\psi_{\mathsf{a}} = \mathbb{E}(Y^{Q_{\mathsf{a}}}),$$

where $Q_a \sim \text{Categorical} \{ q_a(A = 1 \mid V), \dots, q_a(A = d \mid V) \}$. These can adapt to positivity violations!

Issue: To respect positivity, may have non-zero probability of attending many treatments, and so $\psi_a - \psi_b$ can be driven by performance at treatment *c*. Unfair?

Dynamic stochastic intervention targeting treatment *a*: For $b \in \{1, ..., d\}$, define an *interventional propensity score*

 $q_a(A = b \mid V)$ (a function of $V \subseteq X$).

The parameter targeting treatment *a* is

$$\psi_{\mathsf{a}} = \mathbb{E}(Y^{Q_{\mathsf{a}}}),$$

where $Q_a \sim \text{Categorical} \{ q_a(A = 1 \mid V), \dots, q_a(A = d \mid V) \}$. These can adapt to positivity violations!

Issue: To respect positivity, may have non-zero probability of attending many treatments, and so $\psi_a - \psi_b$ can be driven by performance at treatment *c*. Unfair?

Dynamic stochastic intervention targeting treatment *a*: For $b \in \{1, ..., d\}$, define an *interventional propensity score*

 $q_a(A = b \mid V)$ (a function of $V \subseteq X$).

The parameter targeting treatment *a* is

$$\psi_{\mathbf{a}} = \mathbb{E}(Y^{Q_{\mathbf{a}}}),$$

where $Q_a \sim \text{Categorical} \{ q_a(A = 1 \mid V), \dots, q_a(A = d \mid V) \}$. These can adapt to positivity violations!

Issue: To respect positivity, may have non-zero probability of attending many treatments, and so $\psi_a - \psi_b$ can be driven by performance at treatment *c*. Unfair?

Dynamic stochastic intervention targeting treatment *a*: For $b \in \{1, ..., d\}$, define an *interventional propensity score*

 $q_a(A = b \mid V)$ (a function of $V \subseteq X$).

The parameter targeting treatment *a* is

$$\psi_{\mathbf{a}} = \mathbb{E}(Y^{Q_{\mathbf{a}}}),$$

where $Q_a \sim \text{Categorical} \{ q_a(A = 1 \mid V), \dots, q_a(A = d \mid V) \}$. These can adapt to positivity violations!

Issue: To respect positivity, may have non-zero probability of attending many treatments, and so $\psi_a - \psi_b$ can be driven by performance at treatment *c*. Unfair?

Dynamic stochastic intervention targeting treatment *a*: For $b \in \{1, ..., d\}$, define an *interventional propensity score*

 $q_a(A = b \mid V)$ (a function of $V \subseteq X$).

The parameter targeting treatment *a* is

$$\psi_{a} = \mathbb{E}(Y^{Q_{a}}),$$

where $Q_a \sim \text{Categorical} \{ q_a(A = 1 \mid V), \dots, q_a(A = d \mid V) \}$. These can adapt to positivity violations!

Issue: To respect positivity, may have non-zero probability of attending many treatments, and so $\psi_a - \psi_b$ can be driven by performance at treatment *c*. Unfair?

Fairness criterion

In words, V-fairness: If a outperforms b in every stratum of V, then the parameters ψ_a and ψ_b must preserve that ordering (and same for a = b and a < b)

For a subset $V \subseteq X$, parameters $\psi_a = \mathbb{E}(Y^{Q_a})$ and $\psi_b = \mathbb{E}(Y^{Q_b})$ are *V*-fair if

 $\mathbb{P}^{c}\{\mathbb{E}(Y^{a} \mid V) > \mathbb{E}(Y^{b} \mid V)\} = 1 \implies \psi_{a} > \psi_{b}$

and similarly for "<" and "=," under all allowed counterfactual distributions $\mathbb{P}^c.$

- Indirect standardization in provider profiling
- Naive implementations of dynamic stochastic interventions from causal inference

In words, V-fairness: If a outperforms b in every stratum of V, then the parameters ψ_a and ψ_b must preserve that ordering (and same for a = b and a < b)

For a subset $V \subseteq X$, parameters $\psi_a = \mathbb{E}(Y^{Q_a})$ and $\psi_b = \mathbb{E}(Y^{Q_b})$ are *V*-fair if

 $\mathbb{P}^{c}\{\mathbb{E}(Y^{a} \mid V) > \mathbb{E}(Y^{b} \mid V)\} = 1 \implies \psi_{a} > \psi_{b}$

and similarly for "<" and "=," under all allowed counterfactual distributions $\mathbb{P}^c.$

- Indirect standardization in provider profiling
- Naive implementations of dynamic stochastic interventions from causal inference

In words, V-fairness: If a outperforms b in every stratum of V, then the parameters ψ_a and ψ_b must preserve that ordering (and same for a = b and a < b)

For a subset $V \subseteq X$, parameters $\psi_a = \mathbb{E}(Y^{Q_a})$ and $\psi_b = \mathbb{E}(Y^{Q_b})$ are *V*-fair if

 $\mathbb{P}^{c}\{\mathbb{E}(Y^{a} \mid V) > \mathbb{E}(Y^{b} \mid V)\} = 1 \implies \psi_{a} > \psi_{b}$

and similarly for "<" and "=," under all allowed counterfactual distributions $\mathbb{P}^c.$

- Indirect standardization in provider profiling
- Naive implementations of dynamic stochastic interventions from causal inference

In words, V-fairness: If a outperforms b in every stratum of V, then the parameters ψ_a and ψ_b must preserve that ordering (and same for a = b and a < b)

For a subset $V \subseteq X$, parameters $\psi_a = \mathbb{E}(Y^{Q_a})$ and $\psi_b = \mathbb{E}(Y^{Q_b})$ are *V*-fair if

 $\mathbb{P}^{c}\{\mathbb{E}(Y^{a} \mid V) > \mathbb{E}(Y^{b} \mid V)\} = 1 \implies \psi_{a} > \psi_{b}$

and similarly for "<" and "=," under all allowed counterfactual distributions $\mathbb{P}^c.$

- Indirect standardization in provider profiling
- Naive implementations of dynamic stochastic interventions from causal inference

In words, V-fairness: If a outperforms b in every stratum of V, then the parameters ψ_a and ψ_b must preserve that ordering (and same for a = b and a < b)

For a subset $V \subseteq X$, parameters $\psi_a = \mathbb{E}(Y^{Q_a})$ and $\psi_b = \mathbb{E}(Y^{Q_b})$ are *V*-fair if

 $\mathbb{P}^{c}\{\mathbb{E}(Y^{a} \mid V) > \mathbb{E}(Y^{b} \mid V)\} = 1 \implies \psi_{a} > \psi_{b}$

and similarly for "<" and "=," under all allowed counterfactual distributions $\mathbb{P}^c.$

- Indirect standardization in provider profiling
- Naive implementations of dynamic stochastic interventions from causal inference

How can we construct fair parameters?

Step 1: show its equivalence to two properties

Property 1: When targeting treatment a

$$\square \mathbb{P}\{q_a(A=a \mid V) \ge \pi_a(V)\} = 1$$

do not decrease target prop score

$$\blacktriangleright \mathbb{P}\{q_a(A=a \mid V) > \pi_a(V)\} > 0$$

ncrease target prop. score for positive-prob set

$$\blacktriangleright \mathbb{P}\{q_{a}(A = b \mid V) \leq \pi_{b}(V)\} = 1 \text{ for all } b \neq a$$

do not increase non-target prop scores

Property 2: When comparing ψ_a and ψ_b

$$q_a(A = c \mid V) = q_b(A = c \mid V) \quad \forall c \notin \{a, b\}.$$

Make non-target prop scores equal

How can we construct fair parameters? Step 1: show its equivalence to two properties

Property 1: When targeting treatment a

P{q_a(A = a | V) ≥ π_a(V)} = 1 do not decrease target prop score
P{q_a(A = a | V) > π_a(V)} > 0 Increase target prop. score for positive-prob score fo

do not increase non-target prop scores

Property 2: When comparing ψ_a and ψ_b

$$q_a(A = c \mid V) = q_b(A = c \mid V) \quad \forall c \notin \{a, b\}.$$

Make non-target prop scores equal

How can we construct fair parameters? Step 1: show its equivalence to two properties

Property 1: When targeting treatment a

 P{q_a(A = a | V) ≥ π_a(V)} = 1 do not decrease target prop score
 P{q_a(A = a | V) > π_a(V)} > 0 Increase target prop. score for positive-prob set
 P{q_a(A = b | V) ≤ π_b(V)} = 1 for all b ≠ a do not increase non-target prop scores

Property 2: When comparing ψ_a and ψ_b

$$q_a(A = c \mid V) = q_b(A = c \mid V) \quad \forall c \notin \{a, b\}.$$

Make non-target prop scores equal

How can we construct fair parameters? Step 1: show its equivalence to two properties

Property 1: When targeting treatment a

▶ P{q_a(A = a | V) ≥ π_a(V)} = 1 do not decrease target prop score

$$\blacktriangleright \mathbb{P}\{q_a(A=a \mid V) > \pi_a(V)\} > 0$$

ncrease target prop. score for positive-prob set

$$\blacktriangleright \mathbb{P}\{q_a(A=b \mid V) \leq \pi_b(V)\} = 1 \text{ for all } b \neq a$$

do not increase non-target prop scores

Property 2: When comparing ψ_a and ψ_b

$$q_a(A = c \mid V) = q_b(A = c \mid V) \quad \forall c \notin \{a, b\}.$$

Make non-target prop scores equal

How can we construct fair parameters? Step 1: show its equivalence to two properties

Property 1: When targeting treatment a

 P{q_a(A = a | V) ≥ π_a(V)} = 1 do not decrease target prop score
 P{q_a(A = a | V) > π_a(V)} > 0 Increase target prop. score for positive-prob set
 P{q_a(A = b | V) ≤ π_b(V)} = 1 for all b ≠ a do not increase non-target prop scores

Property 2: When comparing ψ_a and ψ_b

$$q_a(A = c \mid V) = q_b(A = c \mid V) \quad \forall c \notin \{a, b\}.$$

Make non-target prop scores equal

How can we construct fair parameters? Step 1: show its equivalence to two properties

Property 1: When targeting treatment a

- ► $\mathbb{P}\{q_a(A = a \mid V) \ge \pi_a(V)\} = 1$ do not decrease target prop score
- ▶ P{q_a(A = a | V) > π_a(V)} > 0 Increase target prop. score for positive-prob set
- ▶ P{q_a(A = b | V) ≤ π_b(V)} = 1 for all b ≠ a do not increase non-target prop scores

Property 2: When comparing ψ_a and ψ_b

$$q_a(A = c \mid V) = q_b(A = c \mid V) \quad \forall c \notin \{a, b\}.$$

Make non-target prop scores equal

How can we construct fair parameters? Step 1: show its equivalence to two properties

Property 1: When targeting treatment a

▶ P{q_a(A = a | V) ≥ π_a(V)} = 1 do not decrease target prop score

▶
$$\mathbb{P}\{q_a(A = b \mid V) \leq \pi_b(V)\} = 1 \text{ for all } b \neq a$$

do not increase non-target prop scores

Property 2: When comparing ψ_a and ψ_b

$$q_a(A = c \mid V) = q_b(A = c \mid V) \quad \forall c \notin \{a, b\}.$$

Make non-target prop scores equal

How can we construct fair parameters? Step 1: show its equivalence to two properties

Property 1: When targeting treatment a

▶ P{q_a(A = a | V) ≥ π_a(V)} = 1 do not decrease target prop score

▶
$$\mathbb{P}\{q_a(A = b \mid V) \leq \pi_b(V)\} = 1 \text{ for all } b \neq a$$

do not increase non-target prop scores

Property 2: When comparing ψ_a and ψ_b

$$q_a(A = c \mid V) = q_b(A = c \mid V) \quad \forall c \notin \{a, b\}.$$

Make non-target prop scores equal

Positivity

What about positivity?

Some positivity is required.

Theorem: Let

$$C_V = \Big\{ v : \mathbb{P}\{\pi_a(X) > 0 \mid V = v\} = 1 \forall a \Big\}.$$

denote the set of subjects that have non-zero prop score for every treatment.

Then, $\mathbb{P}(C_V) > 0$ is *necessary* for a set of fair parameters $\{\psi_a\}_{a=1}^d$ to be *identifiable*

In other words, there has to be at least *some* subset of subjects with non-zero probability for each treatment.

What about positivity? Some positivity is required.

Theorem: Let

$$C_V = \Big\{ v : \mathbb{P}\{\pi_a(X) > 0 \mid V = v\} = 1 \ \forall a \Big\}.$$

denote the set of subjects that have non-zero prop score for every treatment.

Then, $\mathbb{P}(C_V) > 0$ is *necessary* for a set of fair parameters $\{\psi_a\}_{a=1}^d$ to be *identifiable*

In other words, there has to be at least *some* subset of subjects with non-zero probability for each treatment.

What about positivity? Some positivity is required.

Theorem: Let

$$C_V = \Big\{ v : \mathbb{P}\{\pi_a(X) > 0 \mid V = v\} = 1 \forall a \Big\}.$$

denote the set of subjects that have non-zero prop score for every treatment.

Then, $\mathbb{P}(C_V) > 0$ is *necessary* for a set of fair parameters $\{\psi_a\}_{a=1}^d$ to be *identifiable*

In other words, there has to be at least *some* subset of subjects with non-zero probability for each treatment.

What about positivity? Some positivity is required.

Theorem: Let

$$C_V = \Big\{ v : \mathbb{P}\{\pi_a(X) > 0 \mid V = v\} = 1 \forall a \Big\}.$$

denote the set of subjects that have non-zero prop score for every treatment.

Then, $\mathbb{P}(C_V) > 0$ is *necessary* for a set of fair parameters $\{\psi_a\}_{a=1}^d$ to be *identifiable*

In other words, there has to be at least *some* subset of subjects with non-zero probability for each treatment.

What about positivity? Some positivity is required.

Theorem: Let

$$C_V = \Big\{ v : \mathbb{P}\{\pi_a(X) > 0 \mid V = v\} = 1 \forall a \Big\}.$$

denote the set of subjects that have non-zero prop score for every treatment.

Then, $\mathbb{P}(C_V) > 0$ is *necessary* for a set of fair parameters $\{\psi_a\}_{a=1}^d$ to be *identifiable*

In other words, there has to be at least *some* subset of subjects with non-zero probability for each treatment.

What about positivity? Some positivity is required.

Theorem: Let

$$C_V = \Big\{ v : \mathbb{P}\{\pi_a(X) > 0 \mid V = v\} = 1 \forall a \Big\}.$$

denote the set of subjects that have non-zero prop score for every treatment.

Then, $\mathbb{P}(C_V) > 0$ is *necessary* for a set of fair parameters $\{\psi_a\}_{a=1}^d$ to be *identifiable*

In other words, there has to be at least *some* subset of subjects with non-zero probability for each treatment.

Constructing fair and identifiable parameters

Properties 1 and 2: $f : [0,1] \rightarrow [0,1]$ such that $f(x) \le x$ Any shift works; e.g., f(x) = 0.9x.

$$q_{a}(A = b \mid V) = \underbrace{\mathbb{1}(b \neq a)f\{\pi_{b}(V)\}}_{\text{Shift prob. down at } b \neq a} + \underbrace{\mathbb{1}(b = a)\left[1 - \sum_{b \neq a} f\{\pi_{b}(V)\}\right]}_{\text{Shift prob. up at target } b = a}$$

Property 1 satisfied directly

Property 2:
$$q_a(A = c \mid V) = q_b(A = c \mid V) = f\{\pi_c(V)\}$$

Necessary positivity: Require $\mathbb{P}(\mathcal{C}_V) > 0$. Only intervene on this set.

$$q_{a}(A = b \mid V) = \underbrace{\mathbb{1}(V \notin C_{V})\pi_{b}(V)}_{+ \mathbb{1}(V \in C_{V})} \left(\mathbb{1}(b \neq a)f\{\pi_{b}(V)\} + \mathbb{1}(b = a)\left[1 - \sum_{b \neq a}f\{\pi_{b}(V)\}\right]\right)$$

Properties 1 and 2: $f : [0,1] \rightarrow [0,1]$ such that $f(x) \le x$ Any shift works; e.g., f(x) = 0.9x.

$$q_{a}(A = b \mid V) = \underbrace{\mathbb{1}(b \neq a)f\{\pi_{b}(V)\}}_{\text{Shift prob. down at } b \neq a} + \underbrace{\mathbb{1}(b = a)\left[1 - \sum_{b \neq a} f\{\pi_{b}(V)\}\right]}_{\text{Shift prob. up at target } b = a}$$

Property 1 satisfied directly

② Property 2:
$$q_a(A = c \mid V) = q_b(A = c \mid V) = f\{\pi_c(V)\}$$

Necessary positivity: Require $\mathbb{P}(\mathcal{C}_V) > 0$. Only intervene on this set.

$$q_{a}(A = b \mid V) = \underbrace{\mathbb{1}(V \notin C_{V})\pi_{b}(V)}_{+ \mathbb{1}(V \in C_{V})} \left(\mathbb{1}(b \neq a)f\{\pi_{b}(V)\} + \mathbb{1}(b = a)\left[1 - \sum_{b \neq a}f\{\pi_{b}(V)\}\right]\right)$$

Properties 1 and 2: $f : [0,1] \rightarrow [0,1]$ such that $f(x) \le x$ Any shift works; e.g., f(x) = 0.9x.

$$q_{a}(A = b \mid V) = \underbrace{\mathbb{1}(b \neq a)f\{\pi_{b}(V)\}}_{\text{Shift prob. down at } b \neq a} + \underbrace{\mathbb{1}(b = a)\left[1 - \sum_{b \neq a} f\{\pi_{b}(V)\}\right]}_{\text{Shift prob. up at target } b = a}$$

Property 1 satisfied directly

2 Property 2:
$$q_a(A = c \mid V) = q_b(A = c \mid V) = f\{\pi_c(V)\}$$

Necessary positivity: Require $\mathbb{P}(\mathcal{C}_{\mathcal{V}}) > 0$. Only intervene on this set.

$$q_{a}(A = b \mid V) = \underbrace{\mathbb{1}(V \notin C_{V})\pi_{b}(V)}_{+ \mathbb{1}(V \in C_{V})} \left(\mathbb{1}(b \neq a)f\{\pi_{b}(V)\} + \mathbb{1}(b = a)\left[1 - \sum_{b \neq a}f\{\pi_{b}(V)\}\right]\right)$$

Properties 1 and 2: $f : [0,1] \rightarrow [0,1]$ such that $f(x) \le x$ Any shift works; e.g., f(x) = 0.9x.

$$q_{a}(A = b \mid V) = \underbrace{\mathbb{1}(b \neq a)f\{\pi_{b}(V)\}}_{\text{Shift prob. down at } b \neq a} + \underbrace{\mathbb{1}(b = a)\left[1 - \sum_{b \neq a} f\{\pi_{b}(V)\}\right]}_{\text{Shift prob. up at target } b = a}$$

Property 1 satisfied directly

Property 2:
$$q_a(A = c \mid V) = q_b(A = c \mid V) = f\{\pi_c(V)\}\$$

Necessary positivity: Require $\mathbb{P}(C_V) > 0$. Only intervene on this set.

$$q_{a}(A = b \mid V) = \underbrace{\mathbb{1}(V \notin C_{V})\pi_{b}(V)}_{\texttt{H}(V \in C_{V})} + \mathbb{1}(V \in C_{V}) \left(\mathbb{1}(b \neq a)f\{\pi_{b}(V)\} + \mathbb{1}(b = a)\left[1 - \sum_{b \neq a}f\{\pi_{b}(V)\}\right]\right)$$

Properties 1 and 2: $f : [0,1] \rightarrow [0,1]$ such that $f(x) \le x$ Any shift works; e.g., f(x) = 0.9x.

$$q_{a}(A = b \mid V) = \underbrace{\mathbb{1}(b \neq a)f\{\pi_{b}(V)\}}_{\text{Shift prob. down at } b \neq a} + \underbrace{\mathbb{1}(b = a)\left[1 - \sum_{b \neq a} f\{\pi_{b}(V)\}\right]}_{\text{Shift prob. up at target } b = a}$$

Property 1 satisfied directly

② Property 2:
$$q_a(A = c | V) = q_b(A = c | V) = f\{\pi_c(V)\}$$

Necessary positivity: Require $\mathbb{P}(C_V) > 0$. Only intervene on this set.

$$q_{a}(A = b \mid V) = \underbrace{\mathbb{1}(V \notin C_{V})\pi_{b}(V)}_{\texttt{H}(V \in C_{V})} + \mathbb{1}(V \in C_{V}) \left(\mathbb{1}(b \neq a)f\{\pi_{b}(V)\} + \mathbb{1}(b = a)\left[1 - \sum_{b \neq a}f\{\pi_{b}(V)\}\right]\right)$$

Properties 1 and 2: $f : [0,1] \rightarrow [0,1]$ such that $f(x) \le x$ Any shift works; e.g., f(x) = 0.9x.

$$q_{a}(A = b \mid V) = \underbrace{\mathbb{1}(b \neq a)f\{\pi_{b}(V)\}}_{\text{Shift prob. down at } b \neq a} + \underbrace{\mathbb{1}(b = a)\left[1 - \sum_{b \neq a} f\{\pi_{b}(V)\}\right]}_{\text{Shift prob. up at target } b = a}$$

Property 1 satisfied directly

2 Property 2:
$$q_a(A = c \mid V) = q_b(A = c \mid V) = f\{\pi_c(V)\}$$

Necessary positivity: Require $\mathbb{P}(C_V) > 0$. Only intervene on this set.

$$q_{a}(A = b \mid V) = \underbrace{\mathbb{1}(V \notin C_{V})\pi_{b}(V)}_{\text{H}(V \in C_{V})} + \underbrace{\mathbb{1}(V \in C_{V})\left(\mathbb{1}(b \neq a)f\{\pi_{b}(V)\} + \mathbb{1}(b = a)\left[1 - \sum_{b \neq a}f\{\pi_{b}(V)\}\right]\right)}_{\text{Intervention inside trimmed set}}$$

- This construction generalizes to any shift intervention by choosing f(x); includes, e.g., incremental propensity score shift [Kennedy, 2019] and a risk ratio multiplication [Wen et al., 2023]
- Generalizes dynamic stochastic interventions to un-ordered multi-valued treatment and allows us to target specific treatments.
 - \rightarrow Future work: target specific continuous treatment values

Identification and estimation

Under consistency, exchangeability, and $\mathbb{P}(C_V) > 0$:

$$\psi_{a} = \mathbb{E}(Y^{Q_{a}}) = \mathbb{E}\Big[\sum_{b=1}^{d} \mathbb{E}\{\mu_{b}(X) \mid V\}q_{a}(A = b \mid V)\Big].$$

where $\mu_b(X) = \mathbb{E}(Y \mid A = b, X)$.

lssue 1: Plug-in estimators have bad properties. Solution: Use doubly robust estimator

Issue 2: must estimate $\mathbb{1}(V \in C_V)$. This is difficult and precludes use of doubly robust or double ML estimators. Solution: use smooth approximation $S(V \in C_V)$ for indicator.

Doubly robust-style estimator: $\widehat{\psi}_a = \frac{1}{n} \sum_{i=1}^n \widehat{\varphi}_a(Z_i)$, where φ_a is efficient influence function of ψ_a .

Theorem: If $\sum_b \|\widehat{\pi}_b - \pi_b\| \left(\|\widehat{\mu}_b - \mu_b\| + \|\widehat{\pi}_b - \pi_b\| \right) = o_{\mathbb{P}}(n^{-1/2})$, then

$$\sqrt{n}(\widehat{\psi}_{a} - \psi_{a}) \rightsquigarrow N(0, \mathbb{V}\{\varphi_{a}(Z)\})$$

10 / 13

Under consistency, exchangeability, and $\mathbb{P}(C_V) > 0$:

$$\psi_{a} = \mathbb{E}(Y^{Q_{a}}) = \mathbb{E}\Big[\sum_{b=1}^{d} \mathbb{E}\{\mu_{b}(X) \mid V\}q_{a}(A = b \mid V)\Big].$$

where $\mu_b(X) = \mathbb{E}(Y \mid A = b, X)$.

Issue 1: Plug-in estimators have bad properties. Solution: Use doubly robust estimator

Issue 2: must estimate $\mathbb{1}(V \in C_V)$. This is difficult and precludes use of doubly robust or double ML estimators. Solution: use smooth approximation $S(V \in C_V)$ for indicator.

Doubly robust-style estimator: $\widehat{\psi}_a = \frac{1}{n} \sum_{i=1}^n \widehat{\varphi}_a(Z_i)$, where φ_a is *efficient influence function* of ψ_a .

Theorem: If $\sum_b \|\widehat{\pi}_b - \pi_b\| \left(\|\widehat{\mu}_b - \mu_b\| + \|\widehat{\pi}_b - \pi_b\| \right) = o_{\mathbb{P}}(n^{-1/2})$, then

$$\sqrt{n}(\widehat{\psi}_{\mathsf{a}} - \psi_{\mathsf{a}}) \rightsquigarrow \mathsf{N}(\mathsf{0}, \mathbb{V}\{\varphi_{\mathsf{a}}(Z)\})$$

10 / 13

Under consistency, exchangeability, and $\mathbb{P}(C_V) > 0$:

$$\psi_{a} = \mathbb{E}(Y^{Q_{a}}) = \mathbb{E}\Big[\sum_{b=1}^{d} \mathbb{E}\{\mu_{b}(X) \mid V\}q_{a}(A = b \mid V)\Big].$$

where $\mu_b(X) = \mathbb{E}(Y \mid A = b, X)$.

Issue 1: Plug-in estimators have bad properties. Solution: Use doubly robust estimator

Issue 2: must estimate $\mathbb{1}(V \in C_V)$. This is difficult and precludes use of doubly robust or double ML estimators.

Solution: use smooth approximation $S(V \in C_V)$ for indicator.

Doubly robust-style estimator: $\widehat{\psi}_a = \frac{1}{n} \sum_{i=1}^n \widehat{\varphi}_a(Z_i)$, where φ_a is *efficient influence function* of ψ_a .

Theorem: If $\sum_{b} \|\widehat{\pi}_{b} - \pi_{b}\| \left(\|\widehat{\mu}_{b} - \mu_{b}\| + \|\widehat{\pi}_{b} - \pi_{b}\| \right) = o_{\mathbb{P}}(n^{-1/2})$, then

$$\sqrt{n}(\widehat{\psi}_{\mathsf{a}} - \psi_{\mathsf{a}}) \rightsquigarrow N(0, \mathbb{V}\{\varphi_{\mathsf{a}}(Z)\})$$

Under consistency, exchangeability, and $\mathbb{P}(C_V) > 0$:

$$\psi_{a} = \mathbb{E}(Y^{Q_{a}}) = \mathbb{E}\Big[\sum_{b=1}^{d} \mathbb{E}\{\mu_{b}(X) \mid V\}q_{a}(A = b \mid V)\Big].$$

where $\mu_b(X) = \mathbb{E}(Y \mid A = b, X)$.

Issue 1: Plug-in estimators have bad properties. Solution: Use doubly robust estimator

Issue 2: must estimate $\mathbb{1}(V \in C_V)$. This is difficult and precludes use of doubly robust or double ML estimators. Solution: use smooth approximation $S(V \in C_V)$ for indicator.

Doubly robust-style estimator: $\widehat{\psi}_a = \frac{1}{n} \sum_{i=1}^{n} \widehat{\varphi}_a(Z_i)$, where φ_a is efficient influence function of ψ_a .

Theorem: If $\sum_b \|\widehat{\pi}_b - \pi_b\| \left(\|\widehat{\mu}_b - \mu_b\| + \|\widehat{\pi}_b - \pi_b\| \right) = o_{\mathbb{P}}(n^{-1/2})$, then

$$\sqrt{n}(\widehat{\psi}_{a} - \psi_{a}) \rightsquigarrow N(0, \mathbb{V}\{\varphi_{a}(Z)\})$$

10 / 13

Under consistency, exchangeability, and $\mathbb{P}(C_V) > 0$:

$$\psi_{a} = \mathbb{E}(Y^{Q_{a}}) = \mathbb{E}\Big[\sum_{b=1}^{d} \mathbb{E}\{\mu_{b}(X) \mid V\}q_{a}(A = b \mid V)\Big].$$

where $\mu_b(X) = \mathbb{E}(Y \mid A = b, X)$.

Issue 1: Plug-in estimators have bad properties. Solution: Use doubly robust estimator

Issue 2: must estimate $\mathbb{1}(V \in C_V)$. This is difficult and precludes use of doubly robust or double ML estimators. Solution: use smooth approximation $S(V \in C_V)$ for indicator.

Doubly robust-style estimator: $\widehat{\psi}_a = \frac{1}{n} \sum_{i=1}^{n} \widehat{\varphi}_a(Z_i)$, where φ_a is efficient influence function of ψ_a .

Theorem: If $\sum_{b} \|\widehat{\pi}_{b} - \pi_{b}\| (\|\widehat{\mu}_{b} - \mu_{b}\| + \|\widehat{\pi}_{b} - \pi_{b}\|) = o_{\mathbb{P}}(n^{-1/2})$, then

$$\sqrt{n}(\widehat{\psi}_{a} - \psi_{a}) \rightsquigarrow N(0, \mathbb{V}\{\varphi_{a}(Z)\})$$

10 / 13

Under consistency, exchangeability, and $\mathbb{P}(C_V) > 0$:

$$\psi_{a} = \mathbb{E}(Y^{Q_{a}}) = \mathbb{E}\Big[\sum_{b=1}^{d} \mathbb{E}\{\mu_{b}(X) \mid V\}q_{a}(A = b \mid V)\Big].$$

where $\mu_b(X) = \mathbb{E}(Y \mid A = b, X)$.

Issue 1: Plug-in estimators have bad properties. Solution: Use doubly robust estimator

Issue 2: must estimate $\mathbb{1}(V \in C_V)$. This is difficult and precludes use of doubly robust or double ML estimators. Solution: use smooth approximation $S(V \in C_V)$ for indicator.

Doubly robust-style estimator: $\widehat{\psi}_a = \frac{1}{n} \sum_{i=1}^{n} \widehat{\varphi}_a(Z_i)$, where φ_a is efficient influence function of ψ_a .

Theorem: If $\sum_{b} \|\widehat{\pi}_{b} - \pi_{b}\| (\|\widehat{\mu}_{b} - \mu_{b}\| + \|\widehat{\pi}_{b} - \pi_{b}\|) = o_{\mathbb{P}}(n^{-1/2})$, then

$$\sqrt{n}(\widehat{\psi}_{a} - \psi_{a}) \rightsquigarrow N(0, \mathbb{V}\{\varphi_{a}(Z)\})$$
 10 / 13

Data analysis

- ► X: patient demographics, clinical characteristics, etc.
- ► A: dialysis provider
- ► Y: 30-day unplanned readmission (binary)

We constructed $q_a(A = b | X)$ to be X-fair but only require mild positivity on a *trimmed* subset of X.

► X: patient demographics, clinical characteristics, etc.

- A: dialysis provider
- ► *Y*: 30-day unplanned readmission (binary)

We constructed $q_a(A = b | X)$ to be X-fair but only require mild positivity on a *trimmed* subset of X.

- ► X: patient demographics, clinical characteristics, etc.
- ► A: dialysis provider

► *Y*: 30-day unplanned readmission (binary)

We constructed $q_a(A = b | X)$ to be X-fair but only require mild positivity on a *trimmed* subset of X.

- ► X: patient demographics, clinical characteristics, etc.
- ► A: dialysis provider
- Y: 30-day unplanned readmission (binary)

We constructed $q_a(A = b | X)$ to be X-fair but only require mild positivity on a *trimmed* subset of X.

- ► X: patient demographics, clinical characteristics, etc.
- ► A: dialysis provider
- Y: 30-day unplanned readmission (binary)

We constructed $q_a(A = b | X)$ to be X-fair but only require mild positivity on a *trimmed* subset of X.

- ► X: patient demographics, clinical characteristics, etc.
- ► A: dialysis provider
- Y: 30-day unplanned readmission (binary)

We constructed $q_a(A = b | X)$ to be X-fair but only require mild positivity on a *trimmed* subset of X.

Provider VIII had t	he highest	readmission rate
---------------------	------------	------------------

Provider	Diff. w.r.t. VIII	95% CI
I	0.019	[-0.006, 0.044]
II	0.027	[0.004, 0.050]
III	0.007	[-0.020, 0.033]
IV	0.012	[-0.013, 0.036]
V	0.009	[-0.022, 0.040]
VI	0.031	[0.002, 0.060]
VII	0.014	[-0.014, 0.043]
IX	0.013	[-0.019, 0.046]
Х	0.029	[-0.003, 0.061]

Differences relative to VIII (highest readmission rate) show that II and VI appear significantly lower, while others are inconclusive.

Discussion

- Proposed a fairness criterion for comparing treatment efficacy
- Established fairness criterion equivalent to two intuitive properties
- Stablished minimum positivity condition for identification
- Onstructed fair and identifiable parameters
- Onstructed doubly robust-style efficient estimators

- Proposed a fairness criterion for comparing treatment efficacy
- Stablished fairness criterion equivalent to two intuitive properties
- Stablished minimum positivity condition for identification
- Onstructed fair and identifiable parameters
- Onstructed doubly robust-style efficient estimators

- Proposed a fairness criterion for comparing treatment efficacy
- Stablished fairness criterion equivalent to two intuitive properties
- Stablished minimum positivity condition for identification
- Constructed fair and identifiable parameters
- Onstructed doubly robust-style efficient estimators

- Proposed a fairness criterion for comparing treatment efficacy
- Stablished fairness criterion equivalent to two intuitive properties
- Stablished minimum positivity condition for identification
- Constructed fair and identifiable parameters
- Constructed doubly robust-style efficient estimators

- Proposed a fairness criterion for comparing treatment efficacy
- Stablished fairness criterion equivalent to two intuitive properties
- Stablished minimum positivity condition for identification
- Constructed fair and identifiable parameters
- Sonstructed doubly robust-style efficient estimators

Thank you!

https://arxiv.org/abs/2410.13522

- Jean-Yves Audibert and Alexandre B Tsybakov. Fast learning rates for plug-in classifiers. *The Annals of Statistics*, 35(2):608–633, 2007.
- Magdalena Bennett, Juan Pablo Vielma, and José R Zubizarreta. Building representative matched samples with multi-valued treatments in large observational studies. *Journal of computational and graphical statistics*, 29(4):744–757, 2020.
- Edward H Kennedy. Nonparametric causal effects based on incremental propensity score interventions. *Journal of the American Statistical Association*, 114(526):645–656, 2019.
- Edward H Kennedy, Sivaraman Balakrishnan, and Max G'Sell. Sharp instruments for classifying compliers and generalizing causal effects. *The Annals of Statistics*, 48(4):2008–2030, 2020.
- Alexander W Levis, Edward H Kennedy, and Luke Keele. Nonparametric identification and efficient estimation of causal effects with instrumental variables. *arXiv preprint arXiv:2402.09332*, 2024.

- Fan Li and Fan Li. Propensity score weighting for causal inference with multiple treatments. *The Annals of Applied Statistics*, 13 (4):2389–2415, 2019.
- Alexander R Luedtke and Mark J van der Laan. Statistical inference for the mean outcome under a possibly non-unique optimal treatment strategy. *Annals of statistics*, 44(2):713, 2016.
- Martin Roessler, Jochen Schmitt, and Olaf Schoffer. Can we trust the standardized mortality ratio? a formal analysis and evaluation based on axiomatic requirements. *PLoS One*, 16(9): e0257003, 2021.
- Fredrik Sävje, Michael J Higgins, and Jasjeet S Sekhon. Generalized full matching. *Political Analysis*, 29(4):423–447, 2021.
- Jeffrey H Silber, Paul R Rosenbaum, Richard N Ross, Justin M Ludwig, Wei Wang, Bijan A Niknam, Nabanita Mukherjee, Philip A Saynisch, Orit Even-Shoshan, Rachel R Kelz, et al. Template matching for auditing hospital cost and quality. *Health services research*, 49(5):1446–1474, 2014.

Jeffrey H Silber, Paul R Rosenbaum, Bijan A Niknam, Richard N Ross, Joseph G Reiter, Alexander S Hill, Lauren L Hochman, Sydney E Brown, Alexander F Arriaga, Rachel R Kelz, et al. Comparing outcomes and costs of surgical patients treated at major teaching and nonteaching hospitals: a national matched analysis. *Annals of surgery*, 271(3):412–421, 2020.

Lan Wen, Julia L Marcus, and Jessica G Young. Intervention treatment distributions that depend on the observed treatment process and model double robustness in causal survival analysis. *Statistical methods in medical research*, 32(3):509–523, 2023.

Backup

V-fairness

Criterion. (*V*-fairness) For a covariate subset $V \subseteq X$, the parameters $\psi_a = \mathbb{E}(Y^{Q_a})$ and $\psi_b = \mathbb{E}(Y^{Q_b})$ are *V*-fair if they satisfy:

$$\mathbb{P}^{c}\{\mathbb{E}(Y^{a} \mid V) > \mathbb{E}(Y^{b} \mid V)\} = 1 \implies \psi_{a} > \psi_{b},$$
(1)

$$\mathbb{P}^{c}\{\mathbb{E}(Y^{a} \mid V) = \mathbb{E}(Y^{b} \mid V)\} = 1 \implies \psi_{a} = \psi_{b}, \text{ and} \qquad (2)$$

$$\mathbb{P}^{c}\{\mathbb{E}(Y^{a} \mid V) < \mathbb{E}(Y^{b} \mid V)\} = 1 \implies \psi_{a} < \psi_{b}$$
(3)

for all counterfactual distributions \mathbb{P}^c in the counterfactual model.

- This is not an assumption. It is a desideratum; if we invoke the LHS, then the RHS holds.
- ▶ The relationship does **not** depend on $\mathbb{E}(Y^c | V)$ for $c \notin \{a, b\}$.
- The set of TSMs satisfy V-fairness for all V ⊆ X. If {ψ_a}^d_{a=1} do also and LHS of (1), (2), or (3) hold, then {ψ_a}^d_{a=1} have same ordering as TSMs.

V-fairness: contrapositives give further intuition

$$\mathbb{P}^{c} \{ \mathbb{E}(Y^{a} \mid V) > \mathbb{E}(Y^{b} \mid V) \} = 1 \implies \psi_{a} > \psi_{b},$$

$$\mathbb{P}^{c} \{ \mathbb{E}(Y^{a} \mid V) = \mathbb{E}(Y^{b} \mid V) \} = 1 \implies \psi_{a} = \psi_{b}, \text{ and}$$

$$\mathbb{P}^{c} \{ \mathbb{E}(Y^{a} \mid V) < \mathbb{E}(Y^{b} \mid V) \} = 1 \implies \psi_{a} < \psi_{b}$$

$$\begin{split} \psi_{a} &\leq \psi_{b} \implies \mathbb{P}^{c} \{ \mathbb{E}(Y^{a} \mid V) > \mathbb{E}(Y^{b} \mid V) \} < 1 \\ \psi_{a} &\neq \psi_{b} \implies \mathbb{P}^{c} \{ \mathbb{E}(Y^{a} \mid V) = \mathbb{E}(Y^{b} \mid V) \} < 1 \\ \psi_{a} &\geq \psi_{b} \implies \mathbb{P}^{c} \{ \mathbb{E}(Y^{a} \mid V) < \mathbb{E}(Y^{b} \mid V) \} < 1 \end{split}$$

 $\begin{array}{l} V \text{ coarser} \to \text{more desirable fairness condition} \\ \to \text{e.g., } V = \emptyset \text{: } \psi_a \leq \psi_b \implies \mathbb{E}(Y^a) \leq \mathbb{E}(Y^b)^1 \\ V \text{ more granular} \to \text{less desirable fairness condition} \\ \to \text{e.g., } V = X \text{: } \psi_a \leq \psi_b \implies \mathbb{P}^c\{\mathbb{E}(Y^a \mid X) > \mathbb{E}(Y^b \mid X)\} < 1 \end{array}$

¹Combining three contrapositives yields equivalence: $\psi_a < \psi_b \iff \mathbb{E}(Y^a) < \mathbb{E}(Y^b)$, etc.

$$\mathbb{P}^{c}\{\mathbb{E}(Y^{a} \mid V) > \mathbb{E}(Y^{b} \mid V)\} = 1 \implies \psi_{a} > \psi_{b}$$

- Roessler et al. [2021] provided five axioms for fairness. Our criterion is explicitly counterfactual and simpler (one condition).
- ► This is **not** algorithmic fairness.
- ► Other antecedents, like P(Y^a = Y^b) = 1 or P(Y^a < y) < P(Y^b < y) for all y ∈ R, could be considered, but conditional TSMs seemed most natural
- We might want to strengthen the condition to equivalence statement (\leftarrow) for non-empty V
 - Not possible because RHS involves averages, 𝔼(Y^{Q_a}). Easy to construct counter-examples such that ψ_a > ψ_b but 𝒫^c {𝔼(Y^a | V) > 𝔼(Y^b | V)} < 1.</p>
 - ▶ However, with conditional curves, equivalence is possible! I.e., $\psi(\cdot) : \mathbb{P}^c \to (\mathcal{V} \to \mathbb{R})$ is a conditional map. [Future work...]

Two properties that are equivalent to fairness

Unintuitive fairness criterion Intuitive properties

Let $\{q_a(A = b \mid V)\}_{b=1}^d$ denote the interventional propensity scores targeting treatment a.

Property 1:

- ► Do not decrease target propensity score $\mathbb{P}\{q_a(A = a \mid V) \ge \pi_a(V)\} = 1$
- ► Increase target prop. score for positive-prob set $\mathbb{P}\{q_a(A = a \mid V) > \pi_a(V)\} > 0$
- ▶ Do not increase non-target prop. scores $\mathbb{P}\{q_a(A = b \mid V) \le \pi_b(V)\} = 1 \text{ for all } b \neq a$

Let $\{q_a(A = c \mid V)\}_{c=1}^d$ and $\{q_b(A = c \mid V)\}_{c=1}^d$ denote interventional propensity scores target treatments *a* and *b*.

Property 2. Propensity scores equal at non-target treatments $\mathbb{P}\{q_a(A = c \mid V) = q_b(A = c \mid V)\} = 1 \text{ for all } c \notin \{a, b\}.$ **Lemma 1.** Let $\{\psi_a\}_{a=1}^d = \{\mathbb{E}(Y^{Q_a})\}_{a=1}^d$ denote a set of parameters defined by dynamic stochastic interventions that vary with covariates $V \subseteq X$ and target treatments $1, \ldots, d$, respectively.

The set satisfies V-fairness for all $(a, b) \in \{1, ..., d\} \times \{1, ..., d\}$ if and only if it satisfies property 1 separately for all $a \in \{1, ..., d\}$ and property 2 for all $(a, b) \in \{1, ..., d\} \times \{1, ..., d\}$.

This is useful because properties 1 and 2 are much more intuitive.

Property 1:

- Do not decrease target propensity score
- Increase target prop. score for positive-prob
- Do not increase non-target prop. scores

Property 2:

Equal propensity scores for non-target treatments

For f satisfying
$$f(x) < x$$
,

$$\rho_a(A = b \mid V) = \underbrace{\mathbb{1}(b \neq a)}_{\text{non-target}} \underbrace{f\{\pi_b(V)\}}_{\text{decrease}} + \underbrace{\mathbb{1}(b = a)}_{\text{target}} \underbrace{\left[1 - \sum_{b \neq a} f\{\pi_b(V)\}\right]}_{\text{increase}}$$

For property 2, notice that

$$\rho_a(A = c \mid V) = \rho_b(A = c \mid V) = f\{\pi_c(V)\} \text{ for } c \notin \{a, b\}$$

For f satisfying f(x) < x, $\rho_a(A = b \mid V) = \mathbb{1}(b \neq a)f\{\pi_b(V)\} + \mathbb{1}(b = a)[1 - \sum_{b \neq a} f\{\pi_b(V)\}]$

Examples of $f(\cdot)$:

- Multiplicative shift: $f(x) = \delta x, \delta < 1$,
- Exponential tilt: $f(x) = \frac{\delta x}{\delta x + 1 x}, \delta < 1$,

$$\blacktriangleright \mathsf{TSM}: f(x) = 0.$$

By the way... This addresses complications from un-ordered treatment! Intuition: explicitly shift away from non-target treatments and implicitly towards target. This construction works for binary, multi-valued, and continuous treatment. [Future work: target approx. dose-response curve]

Minimum necessary positivity

Theorem 1. Let $\{\psi_a\}_{a=1}^d = \{\mathbb{E}(Y^{Q_a})\}_{a=1}^d$ and interventional propensity scores vary with V and let

$$C_{V} = \{ v : \mathbb{P} \{ \pi_{a}(X) > 0 \mid V = v \} = 1 \ \forall \ a \in \{1, \dots, d\} \}$$
(4)

denote the set of subjects who have a non-zero probability of receiving every treatment.

Then, $\mathbb{P}(C_V) > 0$ is necessary for the parameters to satisfy *V*-fairness and be identifiable simultaneously.

This does not depend on the parameters! It applies to any set of parameters that would satisfy V-fairness and be identifiable.

Trade-off: fairness versus positivity

Theorem 1 ($\mathbb{P}(C_V) > 0$) can also be stated as

$$\mathbb{E}\left(\prod_{a=1}^{d}\mathbb{1}\left[\mathbb{P}\{\pi_{a}(X)>0\mid V\}=1\right]\right)>0$$
(5)

This framing can help illustrate trade-off between fairness and minimum positivity

 $V = \emptyset$:

- Most desirable fairness condition;
- (5) \equiv weak positivity (strong assumption)

V = X:

Least desirable fairness condition

• (5)
$$\equiv \mathbb{E}\left[\prod_{a=1}^{d} \mathbb{1}\left\{\pi_{a}(X) > 0\right\}\right] > 0.$$
 (weakest positivity assumption)

Identifiable examples and smooth approximations

Properties 1 and 2:

$$\rho_a(A = b \mid V) = \mathbb{1}(b \neq a)f\{\pi_b(V)\} + \mathbb{1}(b = a)\left[1 - \sum_{b \neq a} f\{\pi_b(V)\}\right]$$

Necessary positivity:

 \to There must exist a set $\textit{C} \in \mathcal{V}$ for which weak positivity holds. \to "Trimmed" set:

$$C_{V} = \{ v : \mathbb{P} \{ \pi_{a}(X) > 0 \mid V = v \} = 1 \forall a \in \{1, \dots, d\} \}$$

Only intervene on this set.

 $q_{a}(A = b \mid V) = \underbrace{\mathbb{1}(V \notin \mathcal{C}_{V})\pi_{b}(V)}_{\text{Intervention}} + \underbrace{\mathbb{1}(V \in \mathcal{C}_{V})\rho_{a}(A = b \mid V)}_{\text{Intervention inside trimmed set}}$

Focusing on trimmed set agrees with prior intuition from matching and balancing

- In matching and balancing weights literature, prior work has emphasized focusing on group with non-zero probability of attending each treatment, arguing this facilitates useful/fair comparisons between treatments [Silber et al., 2014, 2020, Li and Li, 2019]
- Our work formalizes how/why this is fair
- ► Also suggests we could use state-of-the-art matching methods to construct 1(V ∈ C_V) [Bennett et al., 2020, Sävje et al., 2021]
- We focus on smooth approximation of trimmed set instead

$$q_a(A = b \mid V) = \mathbb{1}(V \notin C_V)\pi_b(V) + \mathbb{1}(V \in C_V)\rho_a(A = b \mid V)$$

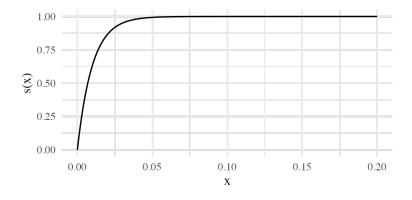
The indicator $\mathbb{1}(V \in C_V)$ is non-smooth, like in trimming Solution: smooth approximation

$$\begin{split} \mathbb{1}(V \in C_V) &= \mathbb{1}\left[\prod_{b=1}^d \mathbb{P}\{\pi_b(X) > 0 \mid V\} = 1\right] \approx \prod_{b=1}^d \mathbb{P}\{\pi_b(X) > 0 \mid V\} \\ &= \prod_{b=1}^d \mathbb{E}[\mathbb{1}\{\pi_b(X) > 0\} \mid V] \\ &\approx \prod_{b=1}^d \mathbb{E}[s\{\pi_b(X)\} \mid V] =: S(V \in C_V) \end{split}$$

where $s\{\pi_b(X)\}$ approximates $\mathbb{1}\{\pi_b(X) > 0\}$.

 $q_a(A = b \mid V) = \{1 - S(V \in C_V)\}\pi_b(V) + S(V \in C_V)\rho_a(A = b \mid V)$

Example: $s(x) = 1 - \exp(-kx), k = 100$



- Constraint that s(0) = 0 appears to be new (compared to prior trimming literature), and suggests novel smooth functions.
- It allows smooth parameters to be fair and identifiable
- We analyze generic $s(\cdot)$ satisfying s(0) = 0

Identification and estimation

Causal parameter: $\psi_{a} = \mathbb{E}\left(Y^{Q_{a}}\right)$ where

$$q_a(A = b \mid V) = \left\{1 - S(V \in C_V)\right\} \pi_b(V) + S(V \in C_V) \rho_a(A = b \mid V)$$

Suppose consistency, exchangeability, and the necessary positivity assumption ($\mathbb{P}(C_V) > 0$) hold. Then, g-formula:

$$\psi_{a} = \mathbb{E}\left[\sum_{b=1}^{d} \mathbb{E}\left\{\mu_{b}(X) \mid V\right\} q_{a}(A = b \mid V)
ight]$$

Plug-in estimator can be biased or have slower-than- \sqrt{n} convergence

Identification suggests the plug-in estimator

$$\widehat{\psi}_{a} = \mathbb{P}_{n}\left[\sum_{b=1}^{d} \widehat{\mathbb{E}}\{\widehat{\mu}_{b}(X) \mid V\}\widehat{q}_{a}(A = b \mid V)\right]$$

$$\blacktriangleright \mathbb{P}_n\{f(Z)\} = \frac{1}{n} \sum_{i=1}^n f(Z_i),$$

- $\widehat{\mu}_b(X)$ regresses $Y \sim \{X, \mathbb{1}(A = b)\}$,
- $\widehat{\mathbb{E}}\{\widehat{\mu}_b(X) \mid V\}$ regresses $\widehat{\mu}_b(X) \sim V$, and
- - With mis-specified parametric models, biased
 - Vith nonparametric models, slower-than- \sqrt{n} convergence

Theorem 2. Efficient influence function of ψ_a when V = X

$$\psi_{a} = \mathbb{E}\left\{\sum_{b=1}^{d} \mu_{b}(X)q_{a}(A = b \mid X)\right\} \text{ and}$$

$$q_{a}(A = b \mid X) = \{1 - S(X \in C_{X})\}\pi_{b}(X) + S(X \in C_{X})\rho_{a}(A = b \mid X)$$

$$\varphi_{a}(Z) = \sum_{b=1}^{d} \left(\mu_{b}(X)q_{a}(A = b \mid X) + \left[\frac{\mathbb{1}(A = b)}{\pi_{b}(X)}\{Y - \mu_{b}(X)\}\right]q_{a}(A = b \mid X) + \mu_{b}(X)\varphi_{q_{a}}(Z; b)\right)$$

where

$$\begin{split} \varphi_{q_{a}}(Z;b) &= \varphi_{S}(Z) \{ \rho_{a}(A = b \mid X) - \pi_{b}(X) \} + S(X \in C_{X}) \varphi_{\rho_{a}}(Z;b) \\ &+ \left\{ 1 - S(X \in C_{X}) \right\} \left\{ \mathbb{1}(A = b) - \pi_{b}(X) \right\}, \\ \varphi_{\rho_{a}}(Z;b) &= \mathbb{1}(b \neq a) f' \{ \pi_{b}(X) \} \{ \mathbb{1}(A = b) - \pi_{b}(X) \} \\ &- \mathbb{1}(b = a) \left[\sum_{b \neq a} f' \{ \pi_{b}(X) \} \{ \mathbb{1}(A = b) - \pi_{b}(X) \} \right], \text{ and} \\ \varphi_{S}(Z) &= \sum_{b=1}^{d} \left(s' \{ \pi_{b}(X) \} \{ \mathbb{1}(A = b) - \pi_{b}(X) \} \right) \prod_{c \neq b}^{d} s\{ \pi_{c}(X) \}. \end{split}$$

Suppose $\{\widehat{\pi}_b, \widehat{\mu}_b\}_{b=1}^d$ constructed on independent sample. Construct an estimator as

$$\widehat{\psi}_{\mathsf{a}} = \mathbb{P}_n\{\widehat{\varphi}_{\mathsf{a}}(\mathsf{Z})\}.$$

Can also use cross-fitting:

- Split data into K folds (5 or 10 common)
- ▶ Train $\hat{\mu}$, $\hat{\pi}$ on K-1 folds
- ▶ Evaluate on *K*th fold.
- Cycle folds and repeat for full-sample efficiency

Theorem 3. Doubly robust-style estimator second order bias

The DR estimator bias satisfies (under some conditions)

$$\begin{split} \left| \mathbb{E} \left(\widehat{\psi}_{a} - \psi_{a} \right) \right| \lesssim \\ \sum_{b=1}^{d} \left| \mathbb{E} \left[\left\{ \widehat{\pi}_{b}(X) - \pi_{b}(X) \right\} \left\{ \widehat{\mu}_{b}(X) - \mu_{b}(X) \right\} \frac{\widehat{q}_{a}(A = b \mid X)}{\widehat{\pi}_{b}(X)} \right] \right| & \text{Bias with } q \text{ known} \\ + \sum_{b=1}^{d} \left\| \widehat{\mu}_{b} - \mu_{b} \right\| \left[\sum_{c=1}^{d} \left\| \widehat{\pi}_{c} - \pi_{c} \right\| \right] & \text{resid. prod. } \widehat{q}_{i} \widehat{\mu} \\ + \left\{ \sum_{b=1}^{d} \left\| \widehat{\pi}_{b} - \pi_{b} \right\| \right\} \left\{ \sum_{c=1}^{d} \left\| \widehat{\pi}_{c} - \pi_{c} \right\| \right\} & \text{resid. prod. } \widehat{\rho}_{a}, \widehat{S} \\ + \sum_{b \neq a}^{d} \left\| \widehat{\pi}_{b} - \pi_{b} \right\|^{2} & \text{DR estimator } \rho_{a} \\ + d \left\{ \sum_{b=1}^{d} \left\| \widehat{\pi}_{b} - \pi_{b} \right\|^{2} + \sum_{b=1}^{d} \sum_{c < b} \left\| \widehat{\pi}_{b} - \pi_{b} \right\| \left\| \widehat{\pi}_{c} - \pi_{c} \right\| \right\} & \text{DR estimator } S \end{split}$$

13 / 13

What if we know the trimmed set?

When the trimmed set is known, then

$$q_{a}(A = b \mid X) = \mathbb{1}(X \in C_{X})\rho_{a}(A = b \mid X) + \mathbb{1}(X \notin C_{X})\pi_{b}(X)$$

$$\left|\mathbb{E}\left(\widehat{\psi}_{a} - \psi_{a}\right)\right| \lesssim$$

$$\sum_{b=1}^{d} \left|\mathbb{E}\left[\left\{\widehat{\pi}_{b}(X) - \pi_{b}(X)\right\} \left\{\widehat{\mu}_{b}(X) - \mu_{b}(X)\right\} \frac{\widehat{q}_{a}(A = b \mid X)}{\widehat{\pi}_{b}(X)}\right]\right| \quad \text{Bias with } q \text{ known}$$

$$+ \sum_{b=1}^{d} \left\|\widehat{\mu}_{b} - \mu_{b}\right\| \left[\mathbb{1}(b \neq a) \|f'(\pi_{b})(\widehat{\pi}_{b} - \pi_{b})\|$$

$$+ \mathbb{1}(b = a) \left\{\sum_{b \neq a} \|f'(\pi_{b})(\widehat{\pi}_{b} - \pi_{b})\|\right\}\right] \quad \text{resid. prod. } \widehat{\rho}, \widehat{\mu}$$

$$+ \sum_{b \neq a}^{d} \left\|f''(\pi_{b})^{1/2}(\widehat{\pi}_{b} - \pi_{b})\right\|^{2} \quad \text{DR estimator } \rho_{a}$$

Similar type of bias term to more typical dynamic stochastic interventions (e.g., IPSIs)

E.g., for trimmed TSIVIS,
$$f(\pi) = 0$$
 for all π .

$$\left| \mathbb{E} \left(\widehat{\psi}_a - \psi_a \right) \right| \lesssim$$

$$\sum_{b=1}^d \left| \mathbb{E} \left[\left\{ \widehat{\pi}_b(X) - \pi_b(X) \right\} \left\{ \widehat{\mu}_b(X) - \mu_b(X) \right\} \frac{\widehat{q}_a(A = b \mid X)}{\widehat{\pi}_b(X)} \right] \right| \quad \text{Bias with } q \text{ known}$$

$$+ \sum_{b=1}^d \left(\| \widehat{\mu}_b - \mu_b \| + \| \widehat{\pi}_b - \pi_b \| \right) \left\{ \sum_{c=1}^d \| \widehat{\pi}_c - \pi_c \| \right\} \quad \text{resid. prod. } \widehat{q}, \widehat{\mu}$$

$$+ d \left\{ \sum_{b=1}^d \| \widehat{\pi}_b - \pi_b \|^2 + \sum_{b=1}^d \sum_{c < b} \| \widehat{\pi}_b - \pi_b \| \| \widehat{\pi}_c - \pi_c \| \right\} \quad \text{DR estimator } S$$

 $S(X \in C_X) = \prod_{b=1}^d s\{\pi_b(X)\}$ involves products of propensity scores: yields the double sums and outer factor d.

What if we know the trimmed set <u>and</u> the interventional propensity scores?

If both the trimmed set and $f(\pi)$ were known, then

► the estimand simplifies to

$$\psi_{a} = \mathbb{E}\{\mu_{a}(X)\mathbb{1}(X \in C_{X})\} + \mathbb{E}\{Y\mathbb{1}(X \notin C_{X})\}$$

the doubly robust-style estimator is

$$\widehat{\psi}_{a} := \mathbb{P}_{n}\left(\left[\frac{\mathbb{1}(A=a)}{\widehat{\pi}_{a}(X)}\{Y - \widehat{\mu}_{a}(X)\} + \widehat{\mu}_{a}(X)\right]\mathbb{1}(X \in C_{X}) + Y\mathbb{1}(X \notin C_{X})\right)$$

Canonically doubly robust bias (over C_X):

$$\left|\mathbb{E}\left(\widehat{\psi}_{a}-\psi_{a}\right)\right| \lesssim \mathbb{E}\left[\{\widehat{\pi}_{a}(X)-\pi_{a}(X)\}\{\widehat{\mu}_{a}(X)-\mu_{a}(X)\}\mathbb{1}\left(X\in C_{X}\right)\right]$$

Normal limiting distribution

Under conditions of main theorem, suppose also that $\sum_{a=1}^{d} \mathbb{E}\{\widehat{\varphi}_{a}(Z) - \varphi_{a}(Z)\} = o_{\mathbb{P}}(1) \text{ and }$

$$\sum_{a=1}^{d} \sum_{b=1}^{d} \|\widehat{\mu}_{a} - \mu_{a}\| \|\widehat{\pi}_{b} - \pi_{b}\| + d \sum_{a=1}^{d} \sum_{b \leq a} \|\widehat{\pi}_{a} - \pi_{a}\| \|\widehat{\pi}_{b} - \pi_{b}\| = o_{\mathbb{P}}(n^{-1/2}).$$

Then,

$$\sqrt{n} \begin{pmatrix} \widehat{\psi}_1 - \psi_1 \\ \vdots \\ \widehat{\psi}_d - \psi_d \end{pmatrix} \rightsquigarrow N(0, \Sigma)$$

where $e_i^T \Sigma e_j = \operatorname{cov} \{ \varphi_i(Z), \varphi_j(Z) \}.$

- \sqrt{n} convergence to Gaussian possible under $n^{-1/4}$ rate conditions on nuisance estimators
- Many typical analyses in provider profiling follow by the delta method

Data analysis

10 largest providers (by number of claims) in NY state

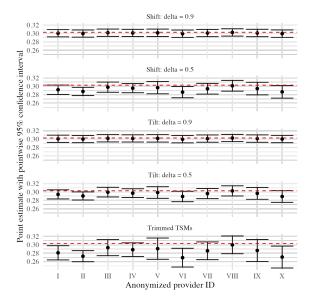
- X: physical attributes, social factors, clinical characteristics, demographic info
- ► A: the provider attended
- Y: 30-day unplanned readmission (binary)

We considered parameters that are X-fair (so, weak fairness condition) but require only mild positivity assumption for ID.

Constructed $S(X \in C_V)$ using $s(x) = 1 - \exp(-100x)$.

Five interventions: multiplicative shifts and exponential tilts with $\delta \in \{0.5, 0.9\}$, and trimmed TSMs.

Point estimates and 95% CIs



Anonymized provider identifier	Difference between 30-day readmission rate for provider VIII and this	95% confidence interval
	provider	
I	0.019	[-0.006, 0.044]
II	0.027	[0.004, 0.050]
III	0.007	[-0.020, 0.033]
IV	0.012	[-0.013, 0.036]
V	0.009	[-0.022, 0.040]
VI	0.031	[0.002, 0.060]
VII	0.014	[-0.014, 0.043]
IX	0.013	[-0.019, 0.046]
Х	0.029	[-0.003, 0.061]

Future work

Future work

- We formalized the intuition that it's only fair to compare treatments when subjects could reasonably take both. Therefore, methods for partitioning the covariate/treatment space could be useful.
 - Intuition suggests, e.g., partition along state lines. Perhaps data-adaptive approach could be better.
- ▶ Dependence on $\hat{\pi}$ and *d* is disappointing, but makes sense given the construction of $S(X \in C_X)$.
 - Next step: figure out how to dodge dimension dependence. Positivity violations suggest there is a sparsity phenomenon, so may be able to construct better estimators leveraging that.
 - Alternatively/additionally, consider unfair interventions that are easier to estimate, and quantify how unfair they are.
- Heterogeneity: inherently interesting, and could satisfy stronger/different fairness condition.

If $s(x) = 1 - \exp(-k_n x)$ where k_n can vary with sample size,

$$\left|\mathbb{E}\left(\widehat{\psi}_{a}-\psi_{a}\right)\right| \lesssim \sum_{b=1}^{d} \sum_{c=1}^{d} k_{n} \|\widehat{\mu}_{b}-\mu_{b}\| \|\widehat{\pi}_{c}-\pi_{c}\| + dk_{n}^{2} \left(\|\widehat{\pi}_{b}-\pi_{b}\|\|\widehat{\pi}_{c}-\pi_{c}\|\right)$$

Allowing parameter to depend on observed treatment

Consider
$$\mathbb{E}(Y^{Q} \mid A = a)$$
 where
 $Q \sim \text{Categorical} \{ q(A = 1 \mid X), \dots, q(A = d \mid X) \}$. Then,
 $\mathbb{E}(Y^{Q} \mid A = a) = \mathbb{E} \{ \mathbb{E}(Y^{Q} \mid A = a, X) \mid A = a \}$
 $= \mathbb{E} \left\{ \sum_{b} \mathbb{E}(Y^{b} \mid A = a, X)q(A = b \mid X) \mid A = a \right\}$
 $= \int_{\mathcal{X}} \sum_{b} \mathbb{E}(Y^{b} \mid X = x)q(A = b \mid X = x)d\mathbb{P}(X = x \mid A = a)$
 $= \int_{\mathcal{X}} \sum_{b} \mathbb{E}(Y^{b} \mid X = x)q(A = b \mid X = x)\frac{\pi_{a}(X = x)}{\mathbb{P}(A = a)}d\mathbb{P}(x)$
 $= \mathbb{E} \left\{ \mathbb{E}(Y^{b} \mid X)\frac{q(A = b \mid X)\pi_{a}(X)}{\mathbb{P}(A = a)} \right\}$
 $= \mathbb{E}(Y^{Q'}), Q' \sim \text{Categorical} \left\{ \frac{q(A = 1 \mid X)\pi_{a}(X)}{\mathbb{P}(A = a)} \dots, \frac{q(A = d \mid X)\pi_{a}(X)}{\mathbb{P}(A = a)} \right\}$

by (1) IE, (2) definition of intervention, (3) exchangeability, (4) Bayes', (5) definition of expectation, (6) re-defining intervention.

Instead of smooth approximations, can use margin conditions [Levis et al., 2024, Kennedy et al., 2020, Audibert and Tsybakov, 2007, Luedtke and van der Laan, 2016].

lpha > 0 such that for all $a \in \{1, \ldots, d\}$ and any $t \ge 0$,

$$\mathbb{P}\left\{|\pi_{a}(X) - 0| \leq t\right\} \lesssim t^{lpha}$$

However, this is not useful because it enforces $\mathbb{P}\{\pi_a(X) = 0\} = 0$ and, when applied across all $a \in \{1, \ldots, d\}$, imposes weak positivity.