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treatment

Provider profiling: compare healthcare providers in terms of
patient outcomes

Zi ={Xi,A;,Y;} fori=1,... nwith:
» X € RP: covariates (e.g., patient information)

> Ae{l,...,d}: multi-valued treatment (e.g., provider)

» Y € R: outcome (e.g., mortality, 30-day unplanned
readmission)

Goal: “fair” comparisons of treatment efficacy
Method:

Q Estimate a (causal) parameter for each treatment a: v,
@ Create league table from {v1,...,%q4}.
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TSMs are fair

Treatment-specific mean (TSM):
¥, =E(Y?) (average potential outcome if all took treatment a).

TSMs allow “fair” comparisons since the distribution of covariates is
held constant across treatments.

Same set of patients would attend provider a in E(Y?) as would
attend provider b in E(Y®) (all patients)
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TSMs are unreasonable target because of positivity violations

But: With many treatments, positivity violations
— ma(X)=P(A=a|X)=0o0r~0
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TSMs are unreasonable target because of positivity violations

But: With many treatments, positivity violations

— ma(X)=P(A=a|X)=0o0r~0

E(Y?) unidentifiable or estimators with have high variance.
Provider identifier
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47535

L1

0.00 0.05 0.10 0.15 0.20 025
Estimated propensity score

10 largest providers in NY state and their patients
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Alternative: dynamic stochastic (“soft”) interventions, but

care is necessary

Dynamic stochastic intervention targeting treatment a:
For b € {1,...,d}, define an interventional propensity score

ga(A=b| V) (a function of V C X).
The parameter targeting treatment a is
s =E(Y%),

where Q, ~ Categorical{g,(A=1|V),...,q(A=d| V)}.
These can adapt to positivity violations!

Issue: To respect positivity, may have non-zero probability of
attending many treatments, and so 1, — 1, can be driven by
performance at treatment c. Unfair?

More generally: what does fairness mean?
4/13
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In words, V-fairness: If a outperforms b in every stratum of V/,

then the parameters 1), and 1), must preserve that ordering (and
same for a= b and a < b)

For a subset V C X, parameters 9,
E(Y ) are V-fair if

E(Y®) and v, =

PHE(Y? | V) >E(Y? [V)} =1 = ¢a>

and similarly for “<" and “="

under all allowed counterfactual
distributions P€.

TSMs satisfy this property, but many parameters do not.
> Indirect standardization in provider profiling

> Naive implementations of dynamic stochastic interventions
from causal inference
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Two intuitive properties < V-fairness

How can we construct fair parameters?
Step 1: show its equivalence to two properties

Property 1: When targeting treatment a
> P{g,(A=a|V) > m(V)}=1
do not decrease target prop score
> P{g.(A=a]|V)>m(V)} >0
Increase target prop. score for positive-prob set
> P{g,(A=b| V) < mp(V)}=1forall b+#a
do not increase non-target prop scores

Property 2: When comparing 1, and v,
Ga(A=c|V) = gp(A=c|V) Vc¢{a b}
Make non-target prop scores equal

Lemma: {v,}9_, facilitate pairwise V-fairness if and only if
(Property 1 holds for all a) & (Property 2 holds for all a, b pairs).
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Minimum necessary positivity

What about positivity?
Some positivity is required.

Theorem: Let
Cy = {v:P{wa(X)>0\ Vzv}lea}.

denote the set of subjects that have non-zero prop score for every
treatment.

Then, |P(Cy) > 0| is necessary for a set of fair parameters

{wa}g’zl to be identifiable

In other words, there has to be at least some subset of subjects
with non-zero probability for each treatment.
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Examples from properties 1 and 2 and min. positivity theorem

Properties 1 and 2: f : [0,1] — [0, 1] such that f(x) < x
Any shift works; e.g., f(x) = 0.9x.

G(A=b|V)=1(b#a)f{m(V)} +1(b=a)[1— ) F{ms(V)}]
Shift prob. down at b#a e
Shift prob. up at target b=a

© Property 1 satisfied directly
© Property 2: g;(A=c | V) =qu(A=c|V)=f{mc(V)}

Necessary positivity: Require P(Cy) > 0. Only intervene on this set.

No intervention

—
Ga(A=b[ V) =1V ¢ Cv)mp(V)

+1(V€CV)< (b#a)f{ﬂ'b(\/)}ﬁ-l 1—Zf{ﬂ'b )

b#a

Intervention inside trimmed set
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This construction may be of independent interest

@ This construction generalizes to any shift intervention by
choosing f(x); includes, e.g., incremental propensity score
shift [Kennedy, 2019] and a risk ratio multiplication [Wen
et al., 2023]

@ Generalizes dynamic stochastic interventions to un-ordered
multi-valued treatment and allows us to target specific
treatments.

— Future work: target specific continuous treatment values
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Identification & a doubly robust-style estimator

Under consistency, exchangeability, and P(Cy) > 0:

Yo =E(Y®) = [ZE{ub )| Vias(A=b]| V).

where pp(X) =E(Y | A= b, X).
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Identification & a doubly robust-style estimator

Under consistency, exchangeability, and P(Cy) > 0:

Yo =E(Y®) = [ZE{ub )| Vias(A=b]| V).

where pp(X) =E(Y | A= b, X).
Issue 1: Plug-in estimators have bad properties.
Solution: Use doubly robust estimator

Issue 2: must estimate 1(V € Cy). This is difficult and precludes
use of doubly robust or double ML estimators.
Solution: use smooth approximation S(V € Cy) for indicator.

Doubly robust-style estimator: 123 = %Zf’:l ©a(Z;), where ¢,
is efficient influence function of 1),.

Theorem: If 3=, ||To—mb| (|| @b~ || +||Fo—s]) = op(n~1/2),
then

\/F({b\a - "pa) ~ N(0=V{<Pa(z)})
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Setting: 10 largest dialysis providers in NY
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Setting: 10 largest dialysis providers in NY

> X: patient demographics, clinical characteristics, etc.
> A: dialysis provider
» Y: 30-day unplanned readmission (binary)
We constructed g,(A = b | X) to be X-fair but only require mild

positivity on a trimmed subset of X.

We estimated the smooth trimmed TSMs across the 10 providers.
These facilitate fair comparisons of all the providers.

11 /13



Comparison vs. provider VIII

Provider VIII had the highest readmission rate

Provider Diff. w.r.t. VIII 95% ClI
I 0.010 [-0.006, 0.044]
11 0.027  [0.004, 0.050]
111 0.007 [-0.020, 0.033]
IV 0.012 [-0.013, 0.036]
v 0.009 [-0.022, 0.040]
VI 0.031  [0.002, 0.060]
VII 0.014 [-0.014, 0.043]
IX 0.013 [-0.019, 0.046]
X 0.029 [-0.003, 0.061]

Differences relative to VIII (highest readmission rate) show that
II and VI appear significantly lower, while others are inconclusive.
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QO Proposed a fairness criterion for comparing treatment efficacy
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Recap:
QO Proposed a fairness criterion for comparing treatment efficacy

@ Established fairness criterion equivalent to two intuitive
properties

© Established minimum positivity condition for identification
@ Constructed fair and identifiable parameters

@ Constructed doubly robust-style efficient estimators
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Thank youl
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V-fairness

Criterion. (V-fairness) For a covariate subset V C X, the
parameters 1), = E(Y®) and 1, = E(Y ®) are V-fair if they

satisfy:
P{E(Y? | V) > E(YP | V)} =1 = 4, > o, (1)
PYE(Y? | V) =E(Y? | V)} =1 = ¢, = 1, and (2)
PUE(Y? | V) <B(YP | V)} =1 = ¢, < s (3)

for all counterfactual distributions P¢ in the counterfactual model.

» This is not an assumption. It is a desideratum; if we invoke
the LHS, then the RHS holds.
> The relationship does not depend on E(Y°€ | V) for ¢ ¢ {a, b}.

> The set of TSMs satisfy V/-fairness for all V C X. If {1,}9_;
do also and LHS of (1), (2), or (3) hold, then {%,}9_; have
same ordering as TSMs.
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V-fairness: contrapositives give further intuition

PLE(Y? | V) > E(YP | V)} =1 = ¢, > ¥y,
PLE(Y? | V) =EB(Y? | V)} =1 = ¢, = tp, and
PYE(Y? | V) <E(YP | V)}=1 = o, < ¢p

ha < by = PUE(Y? | V) > E(Y? | V)} <1
$a # b = PUE(Y? | V) =E(Y?|V)} <1
ba >y = P{E(Y? | V) <E(Y?|V)} <1

V coarser — more desirable fairness condition

—eg, V=0 v, < = E(Y?) <E(YP)!

V' more granular — less desirable fairness condition

—eg, V=X 1, <¢p = PYE(Y? | X)>E(Y?| X))} <1

1Combining three contrapositives yields equivalence:
Ya < by = E(Y?) < E(Y?), etc.
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V-fairness: other observations

PE(Y? | V) > E(Y* | V)} =1 = ¢, > oy

> Roessler et al. [2021] provided five axioms for fairness. Our
criterion is explicitly counterfactual and simpler (one
condition).

> This is not algorithmic fairness.

» Other antecedents, like P(Y? = Y?) =1 or
P(Y? <y) <P(Y? < y) for all y € R, could be considered,
but conditional TSMs seemed most natural
> We might want to strengthen the condition to equivalence
statement ( <= ) for non-empty V
> Not possible because RHS involves averages, E(Y®). Easy to
construct counter-examples such that ¢, > 1 but
P{E(Y?| V) >E(Y?|V)} < 1.
> However, with conditional curves, equivalence is possible! |.e.,
() : P = (V — R) is a conditional map. [Future work...]
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Two properties that are
equivalent to fairness



Unintuitive—fatrresscriterion Intuitive properties

Let {g.(A=b| V)}{_, denote the interventional propensity scores
targeting treatment a.

Property 1:
» Do not decrease target propensity score
P{qa(A =4 | V) > 773(\/)} =1
> Increase target prop. score for positive-prob set
P{q.(A=a| V)>m(V)} >0
» Do not increase non-target prop. scores
P{g.(A=b| V) <mp(V)} =1forall b+# a

Let {g.(A=c| V)}9_; and {qp(A = c | V)}2_; denote
interventional propensity scores target treatments a and b.

Property 2. Propensity scores equal at non-target treatments

P{g.(A=c|V)=qp(A=c | V)} =1forall c ¢{a,b}.
13 /13



Equivalence between V-fairness and properties 1 and 2

d d
Lemma 1. Let {a}s_; = {E(Y)}_, denote a set of pa-
rameters defined by dynamic stochastic interventions that vary
with covariates V C X and target treatments 1, ..., d, respec-
tively.

The set satisfies V-fairness for all (a, b) € {1,...,d} x{1,...,d}
if and only if it satisfies property 1 separately forall a € {1,...,d}
and property 2 for all (a,b) € {1,...,d} x {1,...,d}.

This is useful because properties 1 and 2 are much more
intuitive.
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Properties 1 and 2 suggest examples

Property 1:

» Do not decrease target propensity score

> Increase target prop. score for positive-prob

» Do not increase non-target prop. scores
Property 2:

» Equal propensity scores for non-target treatments

For f satisfying f(x) < x,

palA=b| V)= 1(b # a) F{ms(V)} +1(b = 3) [1 = 3 F{ms(V)}]
Y b#a

non-target decrease target

increase

For property 2, notice that
palA=c| V)= pu(A=c | V) = Flre(V)} for c ¢ {a, b}
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Properties 1 and 2 suggest examples

For f satisfying f(x) < x,

pa(A=b|V)=1b# a)f {ms(V)} + L(b=a)[1 =Y f{ms(V)}]
b#a
Examples of f(-):
» Multiplicative shift: f(x) = (5x 0 <1,
» Exponential tilt: f(x) = 0 <1,
» TSM: f(x) =0.

- 5x+1 X

By the way... This addresses complications from un-ordered
treatment! Intuition: explicitly shift away from non-target
treatments and implicitly towards target. This construction
works for binary, multi-valued, and continuous treatment. [Fu-
ture work: target approx. dose-response curve]
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Minimum necessary positivity



The minimum necessary positivity assumption

Theorem 1. Let {wa}jzl = {IE(YQB)}g:1 and interventional
propensity scores vary with V' and let

Cy ={v:P{m(X)>0|V=v}=1Vac{l,...,d}} (4)

denote the set of subjects who have a non-zero probability of
receiving every treatment.

Then, P(Cy) > 0 is necessary for the parameters to satisfy V-
fairness and be identifiable simultaneously.

This does not depend on the parameters! It applies to any set of
parameters that would satisfy V-fairness and be identifiable.
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Trade-off: fairness versus positivity

Theorem 1 (P(Cy) > 0) can also be stated as

d
]E(Hl[IP{WQ(X)>O\ V}zl}) >0 (5)
a=1

This framing can help illustrate trade-off between fairness and
minimum positivity
V = 0:
» Most desirable fairness condition;
> (5) = weak positivity (strong assumption)
vV =X:
> Least desirable fairness condition
> (5) = E[ngl 1{ma(X) > 0}] > 0. (weakest positivity
assumption)
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|dentifiable examples and
smooth approximations



Properties 1 & 2 plus minimum positivity suggest examples

Properties 1 and 2:
pa(A=b| V)= 1(b# a)f {ms(V)} +1(b=a)[1 — 3 F{ms(V)}]
b#a

Necessary positivity:
— There must exist a set C € V for which weak positivity holds.
— “Trimmed" set:

Cy ={v:P{m(X)>0|V=v}=1Vac{l,...,d}}

Only intervene on this set.

No intervention
Ga(A=b| V) =1(V ¢ Cv)mp(V)+1(V € C)pa(A=b| V)

Intervention inside trimmed set
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Focusing on trimmed set agrees with prior intuition from

matching and balancing

» In matching and balancing weights literature, prior work has
emphasized focusing on group with non-zero probability of
attending each treatment, arguing this facilitates useful /fair
comparisons between treatments [Silber et al., 2014, 2020,
Li and Li, 2019]

» Our work formalizes how/why this is fair
> Also suggests we could use state-of-the-art matching
methods to construct 1(V € Cy) [Bennett et al., 2020, Savje

et al., 2021]

> We focus on smooth approximation of trimmed set instead
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Smooth approximations of the trimmed set

ga(A=b| V) =1(V & C)mp(V) +1(V € Cv)pa(A=b | V)

The indicator 1(V € Cy) is non-smooth, like in trimming
Solution: smooth approximation

Vel =1[[P{m(X)>0]|V}= 11 ~[[P{ms(X) >0V}
b=1 b=1

d

= [[E[L{ms(X) >0} | V]

b=1

d

~[[Es{ms(X)} | V] = S(V € Cv)
b=1

where s{m,(X)} approximates 1{m,(X) > 0}.

Go(A=b|V)={1—S(V e C)tm(V)+S(V € C)ps(A=b]| V)
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Example: s(x) =1 — exp(—kx), k = 100

1.00
0.75
~~
X 050
w1
0.25
0.00
0.00 0.05 0.10 0.15 0.20
X

» Constraint that s(0) = 0 appears to be new (compared to prior
trimming literature), and suggests novel smooth functions.

> |t allows smooth parameters to be fair and identifiable
> We analyze generic s(-) satisfying s(0) =0
13 /13



|dentification and estimation



Identification and plug-in estimator

Causal parameter: ¢, = E (Y®) where

G(A=b|V)={1-S(Ve C)lm(V)+S(V e C)ps(A=b| V)

Suppose consistency, exchangeability, and the necessary positivity
assumption (P(Cy) > 0) hold. Then, g-formula:

d

s =E ZE{Nb(X) | V}qa(A =b|V)

b=1
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Plug-in estimator can be biased or have slower-than-/n

convergence

Identification suggests the plug-in estimator

77[}3 - IP) ZE{M(, | V}qa( =b | V)

b=1

Pn{f(2)} = 5 271 F(Z),

ip(X) regresses Y ~ {X,1(A=b)},
E{Hb( ) | V} regresses jip(X) ~ V, and

ga(A = b | V) plugs estimated propensity scores into the
definition of g,(A=b| V)

vvyyy

> With mis-specified parametric models, biased

» With nonparametric models, slower-than-,/n convergence
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Theorem 2. Efficient influence function of ¢, when V = X

E{ (X _b|X)} and
=b|X)={1- 5(x € Cx)}mp(X)+S(X € Cx)pa(A= b | X)

X
d
b=1
1(A = b)
- [ (%)

@a(z) Z (Mb(x)qa(A =b | X)

{y - ub(X)}] qa(A= b | X) + p6(X)pq,(Z; b))
where
©q.(Z; b) = ps(Z){pa(A=b| X) — m(X)} + S(X € Cx)p,.(Z; )
+{1-s(x € c) H{r(a=b) - m(x)},
©p,(Z; b) = 1(b # a)f'{mp(X)}H{1(A = b) — mp(X)}

[Z f{mu(X)HL(A = b) — m,(X)}], and

b+#a

bi(s{m, JHL(A = b) — mp(X >Hs{7rc .13/13

1 c#b



Doubly robust-style estimator

Suppose {7p, ﬁb}gzl constructed on independent sample.
Construct an estimator as

ba = Po{@a(2)}.

Can also use cross-fitting:
> Split data into K folds (5 or 10 common)
> Train 1, 7 on K — 1 folds
» Evaluate on K fold.

> Cycle folds and repeat for full-sample efficiency
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Theorem 3. Doubly robust-style estimator second order bias

The DR estimator bias satisfies (under some conditions)

B (% —va)| 5
d

> |

b=1

d
+Z”ﬁb*ﬂb” |:Z||%C7Tc”:| resid. prod. g, i
b=1 =1
d d
- {anmn } {men} resid. prod. 7, S
b=1 c=1

{{m’(X — (X)) {is(X) — Mxn%” Bias with ¢ known

+ Z 7 — 7TbH2 DR estimator p,
b#a
d d
d{ S s = moll2 + S0 ST IR — ol [Fe — el } DR estimator S
b=1 b=1 c<b
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What if we know the trimmed set?

When the trimmed set is known, then
ga(A=b| X)=1(X € Cx)pa(A=b | X)+1(X ¢ Cx)mp(X)

‘]E (@a - wa) 5
d

> [E

b=1

+ Z 1726 = s [l(b # a)llf'(ms)(Fo — )|

[{m(x ()} {(X) — ()} EA=BIX)

%04 } ‘ Bias with g known

+1(b= a){ Z||f/(7rb)(%\b — 7rb)||}:| resid. prod. p, 1

b#a

d
2
+ Z fﬂ(ﬂb)l/z(%b - 7Tb)H DR estimator p,

b#a

Similar type of bias term to more typical dynamic stochastic

interventions (e.g., IPSls) .



What if we know the interventional propensity scores?

E.g., for trimmed TSMs, f(7) = 0 for all 7.

O
d ~
S B {{%b(X) — (X)) {is(X) — (X))} W} ‘ Bias with g known
Th
b=1
d d
+ ) (175 — poll + [R5 — ms]) {Z |7 — 7Fc|} resid. prod. g,
b=1 c=1
d d
+ d{ Z 76 — ] + ZZ |76 — mb]| |Te — 7] } DR estimator S
b=1 b=1 c<b

S(X € Cx) = [1¢_, s{mp(X)} involves products of propen-
sity scores: yields the double sums and outer factor d.
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What if we know the trimmed set and the interventional

propensity scores?

If both the trimmed set and f(7) were known, then

> the estimand simplifies to

Ya = E{pa(X)1(X € Cx)} + E{YL(X ¢ Cx)}

> the doubly robust-style estimator is

~ 1A=2a),,, - N
0y =P, ({ o0 1Y (O} ()| 10X € G+ YLX ¢ CX)>

Canonically doubly robust bias (over Cx):

[E (% - )

S E[{@a(X) — ma(X) HFa(X) — pa(X)}1 (X € Cx)]
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Normal limiting distribution

Una(’ier conditions of main theorem, suppose also that
> a=1 E{@a(Z) — 9a(2)} = 0p(1) and

d d d
Z Znﬁa — pallllTs — 7ol + dz Z”%a = 7ol — || = OJP’(nilp)'
a=1 b=1 a=1 b<a
Then, R
Y1 — Y1
ba —

where e Ye; = cov{yi(Z),¢;(Z)}.

» /n convergence to Gaussian possible under n=1/* rate

conditions on nuisance estimators

> Many typical analyses in provider profiling follow by the delta
method
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Data analysis



10 largest providers (by number of claims) in NY state

> X: physical attributes, social factors, clinical characteristics,
demographic info

> A: the provider attended

» Y: 30-day unplanned readmission (binary)
We considered parameters that are X-fair (so, weak fairness
condition) but require only mild positivity assumption for ID.

Constructed S(X € Cy) using s(x) = 1 — exp(—100x).

Five interventions: multiplicative shifts and exponential tilts with
9 € {0.5,0.9}, and trimmed TSMs.
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Point estimates and 95% Cls

Shift: delta = 0.9

032

028
— 026
<
Z
z Shift: delta=0.5
=032
3
9030 — === - ——:E—- ----- --3—-32 :
R St v K St 2 I 2 I
=026
g
3
1S3 Tilt: delta=09
032
o
2028
g 0.26
= .
= Tilt: delta=0.5
T 032
o 030 === =—=p=—= - TTTe T T e~ B T e I .
5 0.26
Z
o
E Trimmed TSMs
203
B e A S e o 'I"II ' ""

028

0 4 {

I hig I v v VI VO VI X X

Anonymized provider ID

13 /13



What about compared to provider VIII?

(which had the worst/highest readmission rate)

Anonymized Difference between 30-day 95% confidence
provider readmission rate for interval
identifier provider VIII and this

provider
I 0.019 [-0.006, 0.044]
II 0.027 [0.004, 0.050]
I1I 0.007 [-0.020, 0.033]
Iv 0.012 [-0.013, 0.036]
v 0.009 [-0.022, 0.040]
VI 0.031 [0.002, 0.060]
VII 0.014 [-0.014, 0.043]
IX 0.013 [-0.019, 0.046]
X 0.029 [-0.003, 0.061]
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Future work



> We formalized the intuition that it's only fair to compare
treatments when subjects could reasonably take both.
Therefore, methods for partitioning the covariate/treatment
space could be useful.

> Intuition suggests, e.g., partition along state lines. Perhaps
data-adaptive approach could be better.

» Dependence on 7 and d is disappointing, but makes sense

given the construction of S(X € Cx).

> Next step: figure out how to dodge dimension dependence.
Positivity violations suggest there is a sparsity phenomenon,
so may be able to construct better estimators leveraging that.

> Alternatively/additionally, consider unfair interventions that
are easier to estimate, and quantify how unfair they are.

> Heterogeneity: inherently interesting, and could satisfy
stronger/different fairness condition.
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Smooth approximation

If s(x) =1 — exp(—knx) where kj, can vary with sample size,

Q

d

SO0 kallfio—pupll17e—mell+ i (IFs—mpl 1 7e—ell)
b=1c=1

[E (% - vs)
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Allowing parameter to depend on observed treatment

Consider E(Y® | A = a) where
Q ~ Categorical{g(A=1| X),...,q(A=d | X)}. Then,

E(Y?|A=2a)=E{E(Y?|A=2aX)|A=a}
—E{ZE(Yb|A—a,X)q(A—b|X)|A—a}
b

:/XZE(Y"|X:x)q(A:b\X:x)d]P’(X:x|A:a)

/ZE (Y| X =x)g(A=b| X =x)" ((i‘(_:))dp(x)

:IE{]E(Y”IX) A ?P,(T_Xl;ra(x)}

. (GA=1X)m(X)  a(A=d | X)m(X)
E(Y?),Q NCategorlcal{ (A = 2) sy F(A = 2) }

by (1) IE, (2) definition of intervention, (3) exchangeability, (4) Bayes’,
(5) definition of expectation, (6) re-defining intervention.
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Margin conditions

Instead of smooth approximations, can use margin conditions [Levis
et al., 2024, Kennedy et al., 2020, Audibert and Tsybakov, 2007,
Luedtke and van der Laan, 2016].

a > 0 such that for all a € {1,...,d} and any t > 0,

P{|ma(X) = 0] <t} < t°

However, this is not useful because it enforces P{m,(X) =0} =0
and, when applied across all a € {1,...,d}, imposes weak
positivity.
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