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Motivation: positivity violations

Longitudinal data: positivity assumption says all subjects
have non-zero prob. of all treatment regimes of interest
(possibly 2T regimes)

Positivity violations are typical with observational data

1 “Absolute” violations:
zero propensity scores;
estimand unidentified

2 “Near”/“practical” violations:
near-zero propensity scores;
estimators have large variance
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Weighting/trimming with single-timepoint data

{(Xi ,Ai ,Yi)}n
i=1

iid∼ P with Xi covariates, Ai ∈ {0, 1} binary
treatment and Yi ∈ R outcome.
Y (a) is potential outcome under treatment a.

Positivity violations: π(X ) = P(A = 1 | X ) ≈ 0 or ≈ 1.

Weighted average treatment effect (WATE):
Change population to satisfy positivity

E

[
E
{

Y (1)− Y (0) | X}f (X )

E{f (X )}

]
with f (X ) : X → [0, 1]︸ ︷︷ ︸

often s{π(X )}
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Example weights

WATE Weight; f (X )

ATO π(X )(1 − π(X ))

Trimmed ATE 1{ε ≤ π(X ) ≤ 1 − ε} for ε ≥ 0
Smooth trimmed
ATE

S{π(X ); ε} where S(x ; ε) ap-
proximates 1(ε ≤ x ≤ 1 − ε)

ATE
1

ATT π(X )

ATC 1 − π(X )

Matching-style ATE π(X ) ∧ 1 − π(X )

Direct covariate balancing Varies and is data-dependent; derived
to directly balance covariates
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Weighting on non-baseline covariates is challenging
Data: (X1,A1,X2,A2,Y ).

How to weight second timepoint propensity scores?
(where we often have positivity violations!)
Traditional answer: not possible

1 After intervention D1, X2(D1) can be counterfactual.
2 Therefore, X2(D1) not necessarily equal to X2

=⇒ Weighting/trimming on X2 is a bad idea. [Petersen et al., 2012]
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Dynamic stochastic interventions

D = d(A,X ,V ) can depend on treatment A, covariates X ,
and auxiliary randomness V

D can adapt so E{Y (D)} IDable and estimable

I Incremental propensity score interventions [Kennedy, 2019]
D ∼ Bernoulli{Qδ(X )},
odds{Qδ(X )} = δ · odds{π(X )}

I Modified treatment policies [Haneuse and Rotnitzky, 2013,
Díaz et al., 2023]
D = A + δ
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Pairs of flip interventions in one timepoint

Flip intervention: Given f (X ), define a pair of flip
interventions, one for each a ∈ {0, 1}, as

Df (a) =
{

A if A = a,
a1{V ≤ f (X )}+ A1{V > f (X )} otherwise,

where V ∼ Unif(0, 1).

If A = a, do not intervene;
o/w, flip to a with probability f (X ).
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WATEs are interventional flip effects

If A = a, do not intervene; o/w, flip to a with probability f (X ).

Interventional flip effect: given Df (1),Df (0),

ψf :=
E [Y {Df (1)} − Y {Df (0)}]

E {Df (1)− Df (0)}
This is the average effect on potential outcomes of Df (1)
compared to Df (0) per unit of additional treatment. [Zhou and
Opacic, 2022]

Proposition: Interventional flip effects are WATEs:

ψf = E
[
E{Y (1)− Y (0) | X}f (X )

E{f (X )}

]
.

Move the goalposts: we can define and estimate longi-
tudinal interventional flip effects
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Longitudinal setup



Longitudinal data
{Zi}n

i=1
iid∼ P ∈ P where Z = (X1,A1,X2,A2, . . . ,XT ,AT ,Y )

Xt ∈ Rd : time-varying covariates
At ∈ {0, 1}: time-varying binary treatment
Y ∈ R: ultimate outcome of interest
History of Ot at t: Ot = (O1, . . . ,Ot)
Future of Ot from t: Ot = (Ot , . . . ,OT )
Ht = (X t ,At−1): covariate and treatment history at t

NPSEM assumption: there are {fX ,t , fA,t}T
t=1 and fY such that

Xt = fX ,t(At−1,Ht−1,UX ,t),

At = fA,t(Ht ,UA,t), and
Y = fY (AT ,HT ,UY ).

where
{

UX ,t ,UA,t ,UY
}

are exogeneous variables 8 / 18
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Causal assumptions
NPSEM embeds consistency
DT = aT =⇒ Y (DT ) = Y (aT )

We will avoid positivity by weighting/flipping
(e.g. ∃ δ > 0 s.t. P{δ < P(At = 1 | Ht) < 1 − δ} = 1.)

Strong sequential randomization:
UA,t ⊥⊥ (UX ,t+1,UA,t+1,UY ) | Ht

Common causes of At and future covariates and outcome and
treatments measured. Allows for ID when intervention
depends on natural value of treatment.

We can construct interventions that only need standard SR for ID.
UA,t ⊥⊥ (UX ,t+1,UY ) | Ht for all t ≤ T
Common causes of At and future covariates and outcome measured.
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Counterfactual variables under Dt−1

Dt−1 generates counterfactual variables at time t:
I Xt(Dt−1) = fX ,t(Dt−1,Ht−1(Dt−2),UX ,t)

“Natural covariate value”

I Ht(Dt−1) = (Dt−1,X t(Dt−1))
“Natural covariate and treatment history”

I At(Dt−1) = fA,t(Ht(Dt−1),UA,t)
“Natural value of treatment”
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Intervention Dt and potential outcomes DT

Dt can be a function of At(Dt−1),Ht(Dt−1).

Ultimately, replace AT with DT :
I Y (DT ) = fY (DT ,HT (DT−1),UY )

“Counterfactual outcomes under DT ”
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Longitudinal weighting and
trimming with flip interventions



Longitudinal weights
Let aT ∈ {0, 1}T be the target regime

f c
t (at ; ht) : {0, 1} × Ht → [0, 1] is a counterfactual

weight function

Examples: πc
t {Ht(Dt−1)} := P{At(Dt−1) = at | Ht(Dt−1)}

Type of weighting Flipping prob.; f c
t {at ;Ht(Dt−1)}

ATT-style πc
t {Ht(Dt−1)}

Overlap weighting πc
t {Ht(Dt−1)}

[
1 − πc

t {Ht(Dt−1)}
]

Trimming 1{ε ≤ πc
t {Ht(Dt−1)} ≤ 1 − ε}

Smooth trimming S
[
πc

t {Ht(Dt−1)}; ε
]

where S(x ; ε) approxi-
mates 1(ε < x < 1 − ε)

(Just replace π from single-timpoint with πc
t )
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Longitudinal flip interventions

Given a weight function f c
t ≡ f c

t {at ;Ht(Dt−1)}
Flip intervention at time t targeting at is

Dt =

{
At(Dt−1), if At(Dt−1) = at ,

1 (Vt ≤ f c
t ) at + 1 (Vt > f c

t )At(Dt−1), otherwise,

where {V1, . . . ,VT}
iid∼ Unif(0, 1) and {V1, . . . ,VT} ⊥⊥ Z .

If At(Dt−1) = at , do nothing;
otherwise, flip to at with probability f c

t {at ;Ht(Dt−1)}
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Longitudinal interventional flip effects
DT targets aT ; D′

T targets a′
T

Longitudinal interventional flip effect:

E
{

Y (DT )− Y (D′
T )
}

1
T
∑T

t=1 |E (Dt − D′
t)|

I E
{

Y (DT )− Y (D′
T )

}
: same as before

I T−1 ∑T
t=1 |E (Dt − D′

t)|: average absolute per-timepoint change in
the number of treatments

There are multiple options for the denominator
1 T−1 ∑T

t=1 P (Dt 6= D′
t): Average per-timepoint probability of

switching treatment
2 Joint distributional distance between dist. of DT and dist. of D′

T
(e.g., f -divergence, optimal transport metric). 14 / 18



Longitudinal interventional flip effects
DT targets aT ; D′

T targets a′
T

Longitudinal interventional flip effect:

E
{

Y (DT )− Y (D′
T )
}

1
T
∑T

t=1 |E (Dt − D′
t)|

I E
{

Y (DT )− Y (D′
T )

}
: same as before

I T−1 ∑T
t=1 |E (Dt − D′

t)|: average absolute per-timepoint change in
the number of treatments

There are multiple options for the denominator
1 T−1 ∑T

t=1 P (Dt 6= D′
t): Average per-timepoint probability of

switching treatment
2 Joint distributional distance between dist. of DT and dist. of D′

T
(e.g., f -divergence, optimal transport metric). 14 / 18



Longitudinal interventional flip effects
DT targets aT ; D′

T targets a′
T

Longitudinal interventional flip effect:

E
{

Y (DT )− Y (D′
T )
}

1
T
∑T

t=1 |E (Dt − D′
t)|

I E
{

Y (DT )− Y (D′
T )

}
: same as before

I T−1 ∑T
t=1 |E (Dt − D′

t)|: average absolute per-timepoint change in
the number of treatments

There are multiple options for the denominator
1 T−1 ∑T

t=1 P (Dt 6= D′
t): Average per-timepoint probability of

switching treatment
2 Joint distributional distance between dist. of DT and dist. of D′

T
(e.g., f -divergence, optimal transport metric). 14 / 18



Longitudinal interventional flip effects
DT targets aT ; D′

T targets a′
T

Longitudinal interventional flip effect:

E
{

Y (DT )− Y (D′
T )
}

1
T
∑T

t=1 |E (Dt − D′
t)|

I E
{

Y (DT )− Y (D′
T )

}
: same as before

I T−1 ∑T
t=1 |E (Dt − D′

t)|: average absolute per-timepoint change in
the number of treatments

There are multiple options for the denominator
1 T−1 ∑T

t=1 P (Dt 6= D′
t): Average per-timepoint probability of

switching treatment
2 Joint distributional distance between dist. of DT and dist. of D′

T
(e.g., f -divergence, optimal transport metric). 14 / 18



Longitudinal interventional flip effects
DT targets aT ; D′

T targets a′
T

Longitudinal interventional flip effect:

E
{

Y (DT )− Y (D′
T )
}

1
T
∑T

t=1 |E (Dt − D′
t)|

I E
{

Y (DT )− Y (D′
T )

}
: same as before

I T−1 ∑T
t=1 |E (Dt − D′

t)|: average absolute per-timepoint change in
the number of treatments

There are multiple options for the denominator
1 T−1 ∑T

t=1 P (Dt 6= D′
t): Average per-timepoint probability of

switching treatment
2 Joint distributional distance between dist. of DT and dist. of D′

T
(e.g., f -divergence, optimal transport metric). 14 / 18



Longitudinal interventional flip effects
DT targets aT ; D′

T targets a′
T

Longitudinal interventional flip effect:

E
{

Y (DT )− Y (D′
T )
}

1
T
∑T

t=1 |E (Dt − D′
t)|

I E
{

Y (DT )− Y (D′
T )

}
: same as before

I T−1 ∑T
t=1 |E (Dt − D′

t)|: average absolute per-timepoint change in
the number of treatments

There are multiple options for the denominator
1 T−1 ∑T

t=1 P (Dt 6= D′
t): Average per-timepoint probability of

switching treatment
2 Joint distributional distance between dist. of DT and dist. of D′

T
(e.g., f -divergence, optimal transport metric). 14 / 18



Theorem: identification
ft : replace P{At(Dt−1) = at | Ht(Dt−1)} by P(At = at | Ht) in f c

t

Suppose
I the NPSEM and strong SR hold and
I P(At = at | Ht) = 0 =⇒ ft(at ;Ht) = 0.

Then,

E
{

Y (DT )
}
=

extended g-formula︷ ︸︸ ︷∑
bT∈{0,1}T

E

{
E
(
Y | AT = bT , XT

) T∏
t=1

Qt
(
bt | bt−1,X t

)}

= E

[
Y

T∏
t=1

Qt(At | Ht)

P(At | Ht)

]}
IPW

where Qt(at | ht) = P(At = at | ht) + ft(at ; ht){1 − P(At = at | ht)}

ft(at ; ht) ≈ 1 =⇒ Qt(at | ht) ≈ 1
ft(at ; ht) ≈ 0 =⇒ Qt(at | ht) ≈ P(At = at | ht)

E(Dt) is ID’d in similar manner
15 / 18
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Estimation
(in two slides)



Estimating smooth flip effects
1 E{Y (DT )} = E

{
Y

∏T
t=1

Qt(At |Ht)
P(At |Ht)

}
2 Qt(at | ht) = P(At = at | ht) + ft(at ; ht){1 − P(At = at | ht)}

Let ft(at ; ht) = st{P(At = at | ht)} .

st(·) non-smooth (e.g., trimming: 1(ε < P(At = at | ht) < 1 − ε))
=⇒ P̂(At = at | ht) drives convergence

st(·) smooth (e.g., smooth trimming, overlap): flip effects are pathwise
differentiable =⇒ efficient influence function (EIF)-based estimators

For smooth st(·), we derive the new EIF (plug-in plus weighted
residuals)

Inspires two one-step estimators (for E{Y (DT )} and E(Dt)):
1 Multiply robust-style
2 Sequentially doubly robust-style (debias

pseudo-outcome in multiply robust-style estimator) 16 / 18
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Bias bounds
1 Multiply robust-style estimator has new result:

Bias is minimum of two errors
→ Díaz et al. [2023] & Kennedy [2019]: unroll into future and past
→ 2(T + 1) multiply robust-style bound

2 Sequentially DR-style estimator is first-of-its-kind
where Qt depends on unknown propensity score

Bias bounds =⇒ weak convergence under nonparametric (ML)
conditions:

Theorem, informal: Let ψ denote flip effect, πt prop. score at t,
m̃t denote seq. reg. at t with estimated pseudo-outcome. Then,

∣∣∣E(
ψ̂sdr − ψ

)∣∣∣ . T∑
t=1

‖π̂t − πt‖
(
‖m̂t − m̃t‖+ ‖π̂t − πt‖

)
.

ML conv. rates︷ ︸︸ ︷
‖π̂t − πt‖ = oP(n−1/4) = ‖m̂t − m̃t‖ =⇒

√
n−consistency & asymp-

totic normality 17 / 18
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Thank you!

Recap:
I T = 1:

WATEs ≡ interventional flip effects
I T > 1: more complicated

Flip ints allow weighting/trimming on
non-baseline covariates; robust to
positivity violations
Can identify and estimate longitudinal
interventional flip effects

I Efficient estimation of longitudinal
interventional flip effects:
(1) multiply robust and
(2) sequentially doubly robust

hadera01@nyu.edu
Prelim draft:

alecmcclean.github.io/
files/
long-weight-short.pdf
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Additional remarks

1 Robustness to positivity violations: Smooth flip effects are
alternative to IPSIs that target a specific regime

2 Relax dependence on natural value of treatment:

Dt = 1
[
Vt ≤ 1(at = 1)f c

t +
(
1 − f c

t
)
P{At(Dt−1) = 1 | Ht(Dt−1)}

]
I Can avoid practical issues — we may not observe natural

value of treatment
I Identification only requires standard SR

3 Flip interventions inspired by maximally coupled policies [Levis
et al., 2024]

4 Single-timepoint WATEs:
I Conditional on f̂ , any WATE can be reinterpreted via

flip ints post-hoc
I Our analysis =⇒ DR-style estimation for all

single-timepoint WATEs w/ smooth weights.
18 / 18



Drawbacks with direct weighting;
or, why we need flip interventions

Longitudinal interventional flip effects do not yield, e.g.,

E

{Y (aT )− Y (a′T )}
∏T

t=1 f c
t {at ;Ht(at−1)}f c

t {a′t ;Ht(a′t−1)}

E
[∏T

t=1 f c
t {at ;Ht(at−1)}f c

t {a′t ;Ht(a′t−1)}
]

 (1)

Weighted average treatment effect of aT versus a′T , where weights based
on counterfactual propensity scores under each regime.

Why? because Dt affects Xt+1(Dt),At+1(Dt)
However, (1) is a bad target!

Interventions that yield (1) are:
1 Cross-world: at t = 2, weight using propensity scores under

D1 = 1 and D1 = 0; non-falsifiable
2 Future-dependent: at t = 1, weight using future propensity

scores at t = 2

(this justifies the caution typically advised) 18 / 18
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