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Abstract

Propensity score trimming addresses positivity violations by excluding individuals
with extreme scores. While well-studied with single-timepoint data, standard methods
only recommend baseline trimming with longitudinal data. Consequently, trimmed
effects remain susceptible to positivity violations at subsequent timepoints. In this
paper, we extend trimming to longitudinal data and demonstrate how to trim on
non-baseline covariates by leveraging dynamic stochastic interventions. We introduce
“flip” interventions, which maintain the treatment status of subjects who would have
received the target treatment while flipping others’ treatment to the target if they are
in the trimmed set. With single-timepoint data, differences in flip effects yield standard
trimmed effects. With longitudinal data, they provide interpretable trimming on non-
baseline covariates. Crucially, flip interventions are policy-relevant, since they could
actually be implemented in practice. We show that other approaches for trimming on
non-baseline covariates do not retain this property. We further develop smooth flip
(“S-flip”) interventions, which incorporate a smooth approximation of the trimming
indicator to produce smooth trimmed effects. We derive efficient influence functions
for S-flip effects and construct multiply robust-style and sequentially doubly robust-
style estimators, which achieve root-n consistency and asymptotic normality under
nonparametric conditions.

Keywords: Causal inference; longitudinal data; positivity violations; trimming; dynamic
stochastic interventions; nonparametrics

1 Introduction

There is a large and growing literature in causal inference for estimating treatment effects
under violations of the positivity assumption. With a binary treatment, the positivity as-
sumption asserts that subjects in every stratum of the covariates have a non-zero probability
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of receiving treatment and control [Herndn and Robins, 2020]. With longitudinal binary
treatments, it asserts that every subject has a non-zero probability of receiving each treat-
ment regime under consideration. Since the number of possible treatment regimes increases
exponentially with the number of timepoints, longitudinal data can be very susceptible to
positivity violations if one wants to examine effect under all possible treatment regimes.
When positivity is fully violated, such that the probability of receiving a particular treat-
ment regime is zero, then the relevant causal effect is not identifiable or estimable from
observed data and point estimates for it can be biased. Meanwhile, even if positivity holds
estimation can still be challenging — when propensity scores (the probability of receiving a
particular treatment) are close to zero (often referred to as “practical” positivity violations)
this can inflate variance estimates. These two phenomena ultimately hamper the ability to
draw scientifically meaningful conclusions from data [Kang and Schafer, 2007, Khan and
Tamer, 2010, Moore et al., 2012, Petersen et al., 2012, Westreich and Cole, 2010].

The causal inference literature has developed two connected approaches for defining
effects that are robust to positivity violations: trimming and dynamic stochastic inter-
ventions.! The first approach, trimming, removes subjects with extreme propensity scores
from the analysis [Crump et al., 2009, Frolich, 2004, Smith and Todd, 2005]. Trimming has
been extensively studied with single-timepoint data, with recent research developing trim-
ming with continuous treatment and trimming based on conditional variances of potential
outcomes [Branson et al., 2023, Khan and Ugander, 2022]. Moreover, Yang and Ding [2018]
introduced smooth trimmed effects, which use a smooth approximation of the trimming
indicator and therefore are pathwise differentiable and, importantly, can be estimated at
\/n-rates under nonparametric assumptions. However, trimming methods have seen only
limited extension to longitudinal settings, with existing approaches recommending trim-
ming using baseline covariates [Jensen et al., 2024, Petersen et al., 2012]. As a result, these
methods remain susceptible to positivity violations that occur on non-baseline covariates.

By contrast, dynamic stochastic interventions and modified treatment policies (MTPs)
offer an alternative approach to addressing positivity violations. These interventions shift
the probability of treatment receipt and adapt to positivity violations at each timepoint,
ensuring that subjects with zero probability of receiving a treatment are not intervened
upon to receive that treatment. Robins et al. [2004] and Stock [1989] pioneered dynamic
stochastic interventions dependent on natural treatment values, later examined by Young
et al. [2014]. In other early related work van der Laan and Petersen [2007] introduced
“realistic” interventions which adapt to positivity violations. Later, Haneuse and Rotnitzky
[2013] and Diaz and van der Laan [2012] introduced MTPs and stochastic variants of them

! Another approach is truncation, which truncates estimated propensity scores within an interval. It is
related to trimming, but different in the sense that the estimand itself is defined by modifying the data-
dependent estimated propensity score. For this reason, we leave an examination of truncation to future
work.



for single timepoint data, while Taubman et al. [2009] developed threshold interventions.
Recent contributions include the incremental propensity score intervention (IPSI) Kennedy
[2019], the multiplicative risk ratio intervention Wen et al. [2023], the general framework
for dynamic stochastic interventions with unordered multi-valued treatments in McClean
et al. [2024Db], the extension of IPSIs to continuous treatment in Schindl et al. [2024],
longitudinal MTPs [Diaz et al., 2023], and super-optimal MTPs [Stensrud et al., 2024].
The natural applicability of dynamic stochastic interventions to longitudinal data has made
them increasingly popular.

1.1 Structure of the paper and our contributions

While methods for trimming and dynamic stochastic interventions have developed largely
in parallel, in Section 2 we show that there is a straightforward connection between them in
single-timepoint data. We demonstrate that trimmed effects can be defined as differences
in “flip” interventions, which intervene on subjects that would not have taken the target
treatment but are in the trimmed set, flipping them to the target treatment. Although
straightforward, this connection between trimmed effects and dynamic interventions has
not, to our knowledge, been systematically investigated previously. The link proves par-
ticularly valuable because it extends to smooth trimmed effects and longitudinal data.
Indeed, in Section 2 we also define smooth flip (“S-flip”) interventions, whose differences
yield smooth trimmed effects. S-flip interventions intervene on subjects that would not
have taken the target treatment and flip them to the target treatment with probability S,
where S is the smooth approximation of the trimming indicator.

Building on this insight from single-timepoint data, Section 3 introduces our nota-
tion for longitudinal data, while Section 4 provides our main extension of flip and S-flip
interventions to longitudinal data. These interventions trim subjects using non-baseline
covariates and flip them toward a target treatment regimen. They are particularly useful
because they can trim on non-baseline covariates and remain identifiable under positivity
violations at all timepoints. They have an additional property: they are “single-world”’, in
the sense that they rely solely on data observable under the intervention itself. As a result,
they are policy-relevant, because they correspond to a policy that could be implemented
in practice.

However, our analysis highlights an interesting consequence of the single-world con-
struction of flip interventions: contrasts between two flip effects targeting two regimes can
reflect differences in sequential trimming sets as well as capturing mechanistic differences in
potential outcomes under the two target regimes. We illustrate this with a simple example
in Section 4.2. Then, we consider an alternative trimmed effect that isolates the mechanis-
tic difference in potential outcomes under two regimes and conducts trimming. Crucially,
we establish that this effect has major drawbacks: it corresponds to interventions that de-



pend on counterfactual and future propensity scores, and therefore lacks practicality and
interpretability.

Section 5 then develops multiply robust-style and sequentially doubly robust-style es-
timators for the single-world S-flip effects, leveraging their efficient influence functions.
These estimators achieve parametric convergence rates under nonparametric conditions,
allowing asymptotically valid inference via Gaussian limiting distributions. We establish
two new results. First, we show how the bias of the multiply robust-style estimator can
be bounded by the minimum of two error decompositions, tightening prior results on the
structure of these errors. In addition, our sequentially doubly robust-style guarantee is
the first such result for a dynamic stochastic intervention that depends on the unknown
propensity score. In ongoing work, we will illustrate our methods using longitudinal data
on corticosteroid use and COVID-19 mortality.

1.2 Mathematical notation

For a function f(Z), we use || f| = 4/ J f(2)?dP(z) to denote the Ly(P) norm, P(f) =

[z f(2)dP(z) to denote the average with respect to the underlying distribution P, and
P.(f) = %Z?Zl f(Z;) to denote the empirical average with respect to n observations. In
a standard abuse of notation, when A is an event we let P(A) denote the probability of A.
We also denote expectation and variance with respect to the underlying distribution by E
and V| respectively. We use the notation a < b to mean a < Cb for some constant C', ~> to
denote convergence in distribution, and 2 for convergence in probability. Additionally, we
use op(+) to denote convergence in probability to zero, i.e., if X,, is a sequence of random

variables then X,, = op(ry,) implies ‘)T(—: 2.

2 Single timepoint trimming and flip interventions

Before generalizing to longitudinal trimming, we build intuition in the single-timepoint

case. We assume data {(X;, A;,Y5) " P where X € R? are covariates, A € {0,1} is a
binary treatment, and ¥ € R is an outcome. Moreover, we assume that the observed data
corresponds to complete data {(X;, 4;, Y;(0), Y;(1)} % pe where Y (a) is the potential
outcome under treatment a. Moreover, Y (D) is the potential outcome under treatment
decision D, which is a random variable that can depend on the natural value of treatment

A and covariates X. Finally, we let 7(X) =P(A =1 | X) denote the propensity score.

With one timepoint, a commonly used trimmed average treatment effect (ATE) is
E[{Y(l) ~Y(0){e <m(X) <1-— 5}} where € > 0 is a user-specified threshold, which
restricts attention to subjects with propensity scores between € and 1 —e. We focus on
unconditional trimmed effects of the form E{f(Z)1(€)}, where £ is an event, because they



can be related to differences in interventions across the whole population, as we show next.
Moreover, in the single-timepoint case, it is also straightforward to relate unconditional
trimmed effect to conditional trimmed effects because E{f(Z) | £} = W and the

methods we develop to identify and estimate the numerator E{f(Z)1(€)} will also apply
to the denominator P(€) = E{1(€)}.

Our first result shows that the unconditional trimmed ATE can be defined as the
difference in potential outcomes under two flip interventions.

Proposition 1. Let D(1) = A+ (1 — A)l{e < n(X) < 1 — ¢} and D(0) = Al —
1{e < m(X) < 1 —¢}] denote treatment decisions targeting treatments a = 1 and a = 0,
respectively. If Y(a) 1L A | X for a € {0,1}, then

E[Y{D(1)} - Y{D(0)}] =E[{¥(1) = Y(0)}1{e < =(X) <1 ~¢}]. (1)

All proofs are delayed to the appendix. Notice that D(a) can also be defined as D(a) =
1(A=a)A+1(A # a)<(1 —AYe<w(X)<l—e}+ Al - e <m(X) <1 g}]>. In
other words, D(a) does not intervene if A already equals the target treatment a; otherwise,

it flips treatment to @ = 1 — A if the subject is in the trimmed set. Therefore, Proposition 1
shows that the trimmed ATE is a difference in interpretable flip interventions.

Smooth trimming. The parallels between trimmed effects and dynamic stochastic inter-
ventions are particularly valuable for constructing smooth trimmed effects, which employ
a smooth approximation of the trimming indicator function. Smooth trimmed effects have
gained popularity because they can be estimated at \/n-convergence rates under nonpara-
metric assumptions — a property that may not hold for non-smooth effects, as the non-
smoothness of the trimming indicator creates a first-order dependence on the propensity
score estimator. We define the smooth trimmed ATE as E[{Y (1) — Y(0)}S(X)], where
S(X) is a smooth approximation of 1{e < m(X) < 1 —e}. The next result demonstrates
this smooth trimmed ATE can be reformulated as a difference between S-flip effects.

Proposition 2. Let D'(1) = A+ (1—-A)1{V < S(X)} and D'(0) = AL{V > S(X)} where
V ~ Unif(0,1) and V 1L (X, A,Y(0),Y(1)). If Y(a) IL A| X for a € {0,1}, then

E[Y{D'(1)} - Y{D'(0)}] = E[{¥ (1) - Y(0)}S(X)].

In this case, D'(a) is also defined as D'(a) = 1(A = a)A + 1(A # a) [(1 - ALV <
S(X)}+AL{V > S(X)}} . In words, this treatment decision says if A = a, do not intervene;

otherwise, flip treatment with probability S(X). Importantly, this framework generalizes to
longitudinal data, as we show next.



Remark 1. In Proposition 2, we introduce an auxiliary random variable V. This is a stan-
dard device in the literature on stochastic interventions, and captures the idea of randomly
reassigning treatment according to a Bernoulli distribution with a modified probability
[Diaz et al., 2023].

3 Setup and background for longitudinal trimming

As in the single timepoint case, we assume n observations drawn iid from some distribution
P in a space of distributions P; i.e., we observe data {Z;}" , idp € P. Each observation
will consist of longitudinal data over T timepoints, so that

Z = (X17A17X27A27' . 'aXT,ATvy)v

where X; € R? are time-varying covariates (X; are baseline covariates), 4; € {0,1} is
a time-varying binary treatment, and Y € R is the ultimate outcome of interest. For a
time-varying random variable Oy, let O; = (O1, ..., O;) denote its history up to time ¢ and
O, = (O, ...,0r) denote its future from time t. Let H; = (X, A;_1) denote covariate and
treatment history up until treatment in timepoint ¢.

We formalize the definition of causal effects using a nonparametric structural equa-
tion model (NPSEM) [Pearl, 2009]. We assume the existence of deterministic functions

{fX,tva,t};‘le and fy such that

Xi = fx (A=, Hi—1,Ux ),
At = fA,t(Hta UA,t)a and
Y = fy(Ar, Hy, Uy).

Here, {{Ux,t, Uar:te{l,... ,T}}, Uy} is a vector of exogenous variables. Subsequently,

we’ll define restrictions on their joint distribution that facilitate identification of causal
effects. We will define the effects in terms of hypothetical interventions in which equation
Ay = fai(Hy,Uay) is removed from the structural model and the exposure is assigned
as a new random variable D; (which could be deterministic). An intervention that sets
exposures up to time t — 1 to D;_1 = {D1,...,D;_1} generates counterfactual variables
X¢(D—1) = fxu{Ds—1,Hi—1(D¢—2),Uxy} and Ay(Di—1) = fae{Hi(D¢-1),Uay;}, where
the counterfactual history is defined recursively as H;(D; 1) = {Et,l,yt(ﬁt,l)} and
A1(Dg) = Ay and X;(Dy) = X1. The variable A;(D;_1) is called the natural value of
treatment [Richardson and Robins, 2013, Young et al., 2014], and represents the possibly
counterfactual value of treatment that would have been observed at time ¢ under an in-
tervention carried out up to time ¢ — 1 but discontinued thereafter. An intervention in
which all treatment variables up to ¢ = T are intervened on generates a counterfactual
outcome Y (ET) = fy{ Dy, Hp(Dr_1), Uy}. Causal effects will be defined in terms of the
distribution of this counterfactual random variable.



3.1 Causal assumptions

The NPSEM implicitly contains the consistency assumption because one subject’s infor-
mation does not depend on another’s. This assumption would be violated if there were
interference between subjects [Tchetgen Tchetgen and VanderWeele, 2012]. We consider
two exchangeability assumptions on the exogeneous variables.

Assumption 1 (Standard sequential randomization). Ugs AL {Q X1t +1,Uy} | Hy for all
t<T.

Assumption 2 (Strong sequential randomization). Uay AL {Ux ;1 1,U 441, Uy } | Hy for all
t<T.

Assumption 1 is standard for the identification of effects under dynamic stochastic
interventions [Diaz et al., 2023]. It is satisfied if the common causes of the treatment A;
and future covariates are measured. Assumption 2 is stronger. It is satisfied if common
causes of treatment A; and future covariates and treatments are measured. This assumption
is similar to that required by Richardson and Robins [2013] (cf. Theorem 31), and allows
identification of effects under certain interventions that depend on the natural value of
treatment [Young et al., 2014]. Finally, note that we do not require the typical positivity
assumption, which says that time-varying propensity scores are bounded away from zero
and one (0 < P(A; =11 H;) < 1), because we will construct interventions which adapt to
positivity violations.

4 Longitudinal trimming and smooth trimming with flip and
S-flip interventions

In this section, we extend flip and S-flip interventions from Section 2 to longitudinal data.
We define longitudinal flip and S-flip interventions and identify the resulting effects, which
perform (smooth) trimming on non-baseline covariates. These effects are identifiable under
arbitrary positivity violations; moreover, they are “single-world,” in the sense that they
only rely on information that would be observed under the series of interventions. As a
result, they retain policy-relevance, as they could be implemented in practice. However,
we also illustrate a subtle consequence of this construction: differences in single-world flip
effects can be driven not only by differences in potential outcomes under the two targeted
regimes, but also by differences in non-baseline trimming. Therefore, we also introduce
an alternative trimmed effect that isolates only the contrast in potential outcomes. We
show that this alternative effect corresponds to interventions that rely on trimming via
counterfactual, or “cross-world,” propensity scores and future propensity scores. Thus,
despite their theoretical appeal in isolating contrasts between two potential outcomes,
we show these cross-world future-dependent trimmed effects have serious practical and
interpretational limitations.



4.1 Single-world flip and S-flip interventions

We now present our primary proposal for longitudinal trimming and smooth trimming:
single-world flip and S-flip interventions. These extend the interventions in Section 2 to
longitudinal data. We begin by defining them and then establish conditions under which
the resulting effects remain identifiable without standard positivity assumptions.

Definition 1 (Single-world flip interventions). Let ar = {a1,...,ar} € {0,1}7 be the
target regime. A flip intervention at time t targeting a; is

Dy — At(bt—l)a if At(ﬁt—l) = Qg,
t= - - = - :
{1 = A¢(Dy—1) H{ay; H(Di—1)} + Ae(Di—1) [1 — If{as; Ht(Dt,l)}], otherwise,

where B B
Itc(at; ht) = 1[P{At(Dt_1) = Q¢ ’ Ht(Dt—l) = ht} > E}.

In words, at time t¢:
o if the natural value of treatment is already a;, the flip intervention does nothing;

o otherwise, it “flips” the subject to the target treatment a; if the propensity score they
would have had for treatment a; exceeds .

For brevity, we suppress the explicit dependence of D; on the target treatment a;, prior
interventions D;_1, and the natural values of treatment and history { A;(Dy_1), H(D—1)},
although one could write Dy = dy{as; Di—1, A¢(Dy—1), Hi(D¢_1} where d; is the function
above. A further important nuance is that the trimming indicator I7(-) relies on propensity
scores determined by both the natural covariate history and the natural treatment value.
Consequently, the intervention is “single-world,” meaning the decision at time ¢ depends
only on information observable under interventions performed up to that point (D;_1).
The superscript “c” emphasizes the “counterfactual” nature of I7(+).

As in the single-timepoint setting, flip interventions involve an indicator function that
is non-smooth, complicating nonparametric estimation. Consequently, an estimator of
a flip effect typically has a first-order dependence on the estimated propensity score. We
therefore introduce S-flip interventions to generalize smooth trimming to longitudinal data,
which can yield y/n-estimable effects under nonparametric conditions.

Definition 2 (S-flip intervention). Let ar = {a1,...,ar} € {0,1}T be the target regime.
A smooth flip (S-flip) intervention at time t targeting a; is

B Ai(Dy—1), if Ai(Di—1) = as,
- At(bt,l)}l[vt < Sf{at;Ht(ﬁt,l)}} + Atl[vt > S¢{ay; H(Dy_1): ki}|, otherwise,



where Vi, ..., Vp are i.i.d. Unif(0, 1) random variables with V; 1L Z for all t € {1,...,T},
and B B
Si(ag; hy) = s|P{A{(Dy—1) = a | H{(Dy—1)}; 64, Fy

where s(-;e¢, k) is a smooth approximation to 1(x > ¢) and k; is a smoothing parameter.
In words, at time t:
o if the natural value of treatment is already a;, the S-flip intervention does nothing;

o otherwise, it “flips” the subject to the target treatment a; with probability S¢{a:; Hy(D¢—1)},
where S; is a smooth approximation of the indicator function that the propensity
score they would have had for treatment a; exceeds €.

For now, we leave the specific smoothing function unspecified. The following result estab-
lishes conditions under which flip and S-flip effects remain identifiable, even under arbitrary
positivity violations. Afterward, we introduce two simple smoothing functions that enable
identification under these conditions.

Theorem 1 (Identification of flip and S-flip effects). Let Dy = {D1, Ds, ..., Dt} denote
flip interventions as in Definition 1 targeting treatment regime ar. Suppose the NPSEM
and Assumption 2 hold. Then,

T
E{Y(Dr)} = Z E {E(Y | Ar = by, X7) HQt(bt \ bt—hXt)} ; (2)

bref0, 1}T Py
(Ay | Hy)
E|Y H Qs A:’|H: ] .
where
(b | be) = {]P’(At = b ) {1~ Dfass o)}y + o). i b= o,
P(Ar = bt | he) {1 — Ii(ay; ht>}7 otherwise,
and

It(at; ht) = 1{]P(At = Q¢ | H; = ht) > 8}.

With the same assumptions, let D be S-flip interventions as in Definition 2, satisfying
P{A;(Dy-1) = a; | H((D¢—1)} =0 = S¢{ay; H(Dy—1)} = 0. Then (2) and (3) also hold
with
(b | he) = { (Ap = by | he) {1 — Se(ag; he) } + Seass he), i by = ar,
P(A; = b | hy) {1 — Si(a ,h )}, otherwise,

where
St(at; ht) = S{P(At = Q¢ | Ht = ht);Et, ]{It}



Theorem 1 establishes that mean potential outcomes under flip and S-flip interventions
are identifiable under only strong sequential randomization and consistency. Equation (2)
provides the g-formula identification [Robins, 1986] while equation (3) provides the inverse
weighting identification. For flip interventions, the result requires that the trimming indi-
cator is zero when the propensity score for the target treatment is zero; similarly, for S-flip
interventions, the smooth trimming indicator must be zero. These constraints prevent pos-
itivity violations that would render the causal effect undefined and can be enforced through
appropriate construction of the trimming indicators. For instance, when ¢ = 0, McClean
et al. [2024b] proposed a simple smooth trimming indicator: s(z;0,k) = 1 — exp(—kz) for
k > 0. For trimming with £ > 0, one might consider s(x;e,k) = m for k > 0.

Before proceeding, we highlight several key observations that provide further context
to these effects:

1. Robustness to positivity violations. S-flip effects retain robustness to positivity
violations, making them a valuable alternative to incremental propensity score inter-
ventions (IPSIs) [Bonvini et al., 2023, Kennedy, 2019]. While both IPSIs and S-flip
interventions are time-varying dynamic stochastic interventions that remain identi-
fiable under positivity violations, S-flip interventions are distinct in their ability to
target specific treatment regimes.

2. Interventions depending on the natural value of treatment. A critique of
interventions that depend on the natural value of treatment is that they may be
impractical because this value is unobserved in practice. This issue can be addressed
in two ways:

(i) An approximation can be constructed by defining interventions based on a sub-
ject’s intended treatment, which may closely approximate their natural treat-
ment value. See Young et al. [2014, Section 6] for a discussion.

(ii) It is possible to define flip and S-flip interventions that do not depend on the
natural value of treatment while still yielding the same identification result as
Theorem 1. The next point elaborates on this modification.

3. Relaxing the sequential randomization assumption. The identification result
in Theorem 1 relies on strong sequential randomization (Assumption 2) because flip
and S-flip interventions depend on the natural treatment value to retain an intuitive
interpretation and intervene on as few subjects as possible. However, this assumption
can be relaxed to standard sequential randomization (Assumption 1) by redefining
the interventions so they do not depend on the natural treatment value. Specifically,
for flip interventions, one could instead define

D, = 1<Vt < 1(a; = V)Iay; Hy(Dy_1)}

10



+ [1 = I {as H(De-1)} | P{AUD:-1) = 1| Hi(Di-)} )
where V; ~ Unif(0,1). Similarly, for S-flip interventions, one could use
Dy = 1(vt < 1(ay = 1)S{ay; Hi(Dy—1)}
+ [1 — S%ay; Ht(ﬁt,l)}} P{A(Ds_1) =1| Ht(ﬁt,l)}).

These redefined interventions satisfy the identification result of Theorem 1 under
standard sequential randomization and do not suffer from the practical concerns
discussed in the previous point.

4. Connections to maximally coupled policies. Flip and S-flip interventions that
depend on the natural value of treatment are related to “maximally coupled general-
ized policies” [Levis et al., 2024], which minimize the number of subjects intervened on
while preserving a target interventional propensity score, Q;(A; | Hy). This approach
was originally proposed to minimize bounds on causal effects under unmeasured con-
founding (e.g., adapting IPSIs [Levis et al., 2024, Section 3.3]). Here, we repurpose
these interventions because they have a nice interpretation as flip interventions. Ex-
amining their robustness to unmeasured confounding remains an open question for
future work.

4.2 Contrasts of flip effects

In this section, we investigate the properties of contrasts of single-world flip effects. First,
we note that they satisfy a minimal property: if the treatment has no effect on the outcome
then the contrast of single-world flip effects equals zero.

Proposition 3. Let Dy and E/T denote two flip interventions. If Y (br) = Y(B/T) for all
br, by € {0,1}7, then E{Y(Dr) — Y/(D7)} = 0.

However, there is also a subtle consequence of the single-world nature of flip interven-
tions: differences between flip effects under two target regimes may reflect both mechanistic
differences in potential outcomes and differences in sequential trimming. In essence, this
occurs because the intervention D; affects X;,1(D;) and A;41(D;) as well as the ultimate
outcome Y (D). The following example illustrates this point in more detail.

Example 1. Suppose T = 2, D, is a single-world flip intervention targeting always-
treated, and E’z is a single-world flip interventions targeting never-treated. Suppose there
are no positivity violations at baseline. Then, D; pushes all subjects into treatment (i.e.,
P{P(D; = 1| X1) = 1} = 1) and D] pushes all subjects into control (i.e., P{P(D] =1 |
X1) =0} =1). Hence, by iterated expectations,

E{Y(Ds) — Y (Dy)} = ZE (bo, 1)P{Dy = by | Hy(1 ZE (b2, 0)P{ D} = by | Ha(0)}]

11



=E[Y(1,1)P{Dz = 1| Ha(1)} - Y(0,0)P{D3 = 0 | H2(0)}]
+E[Y(0,1)P{Dy =0 | Hy(1)} — Y (1,0)P{D5 = 1| H»(0)}] .

There are two properties worth emphasizing:

1. Suppose trimming is different depending whether one is treated or not in the first
timepoint, i.e., P{Dy = 1| H2(1)} and P{D} = 0 | H2(0)} differ. Then,
E[Y(1,1)P{Dy =1| Ha(1)} — Y(0,0)P{D}, = 0 | H2(0)}] does not simplify to reflect
only a weighted difference of Y (1,1) — Y (0,0); it also reflects differences in second-
timepoint trimming.

2. Suppose there are any positivity violations at the second timepoint, i.e., ]P)[]P){DQ =
0| Hi(1)} > 0] > 0 or P[P{Djy = 1| H2(0)} > 0] > 0. Then, the difference
E{Y (D3) — Y(ﬁ;)} will depend on Y (0,1) and Y(1,0) in addition to the difference
Y(1,1) - Y(0,0).

This example highlights two ways that contrasts of single-world flip interventions may
not purely reflect mechanistic differences between potential outcomes under the target
treatment regimes. The first property arises because the non-baseline interventions are
trimming using different propensity scores. Meanwhile, the second property arises because
a shrinking trimmed set means the ultimate effects consider mean potential outcomes un-
der non-target regimes; e.g., E{Y (D2)} incorporates Y (0, 1) due to positivity violations at
the second timepoint. These are not necessarily issues, since each property arises because
the single-world flip interventions are deliberately constructed to be policy-relevant and
implementable in practice. Indeed, both properties can be removed, but require construct-
ing interventions using cross-world propensity scores (for the first issue) and future
propensity scores (for the second issue), as we show next.

Taking a constructive approach, we can consider a general trimmed effect that succeeds
in isolating the difference Y (ar) — Y (a/):

b(ar,ar) = E[{Y (ar) - Y (ay) }ﬁl{ P(Ad(@-1) = ac | Hi(@-1)) > 0, P(Au(@ 1) = af | Hu(@, 1)) > 0}]. (4

This effect isolates the difference Y (ar) — Y (@) among subjects who would have non-
zero probability of receiving both regimes. As a result, it preserves the stochastic ordering
of Y(ar) and Y (a’,). However, it has two major limitations. First, it is “cross-world,”
meaning the trimming function depends on counterfactual covariates under unobservable
treatment regimes. Consequently, it cannot be implemented as a single-world intervention
and it cannot be falsified experimentally or implemented in practice. This limitation paral-
lels natural effects in mediation [Andrews and Didelez, 2021, Richardson and Robins, 2013].
Second, it corresponds to a contrast under future-dependent interventions, as clarified by
Proposition 4, next.
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Proposition 4. Let IIp = Z;l 1{P(At(6t_1) = a; | Ht(at_l)) > 0, P(At(ﬁé_l) =
a; | Hi(@,_,)) > 0}. Then, the treatment decisions Dy = 1(Ap = arp)Ar + 1(Ar #
aT){aTHT+zT(1 _HT)} and Dy = 1(Ar = @) Ar+1(Ar # a’T){a’THTJrZT(l _HT)}
yield E{Y (Dr) ~ Y (Dy) } = ¥(ar, @),

Proposition 4 shows that the trimmed effect in (4) is defined as differences in mean
potential outcomes under two treatment decisions. These treatment decisions correspond
to simultaneous flip interventions: for subjects that would have followed the target regime,
there is no intervention; otherwise, for those that would be in the trimmed set, the in-
tervention flips their treatment to the target regime at all timepoints. A key limitation
of these effects arises from the nature of these interventions, which simultaneously alter
the entire regime and rely on future information at earlier timepoints. For instance, the
intervention at the first timepoint depends on a subject’s natural treatment and covariate
values at all timepoints. The simultaneous nature of the intervention may hamper the
interpretability of the effects.

One may wonder whether Dy and 5% can be constructed that do not use future
information to inform earlier interventions. The next result answers this in the negative,
and shows that, when additional trimming happens after the target regimes diverge, then
one must use future information when constructing treatment rules Dy and E/T to define
the trimmed effect in (4).

Theorem 2 (Impossibility). Let T := Hle 1{P(At(6t,1) = ay | Ht(aH)) >0, P(At(a;_l) =
ay | Hy(a,_y)) > O}. Suppose
1. the target regimes diverge before the final timepoint, i.e., a; # @}, fort <T, and

2. there is additional trimming after the target regimes diverge, i.e., there exists s >t
such that P(I1;) — P(II5) > 0.

Then, one cannot construct interventions D and ﬁép which only depend on current and
past treatment and covariate information yielding E{Y (Dr) — Y(ﬁ"]‘)} = Y(ar,ay). In
other words, the interventions must use future information.

5 Estimation and inference

In this section, we outline methods for estimating single-world S-flip effects as in Defini-
tion 2. Throughout, we have assumed that the trimming function or smooth trimming
function were known a priori. We will continue to do so in this section. When this is
not the case — for example, if one wanted to decide the trimming threshold or smooth
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trimming parameter data-adaptively — then estimation and inference are more complex;
see Khan and Ugander [2022] for a review.

Even in our simpler setting where the trimming function is fixed, conducting inference
presents different challenges depending on whether we use smooth or non-smooth trimmed
effects. For non-smooth trimmed effects, the lack of pathwise differentiability due to the
non-smoothness of the trimming indicator function creates complications. Without ad-
ditional assumptions, the performance of estimators for these effects is dictated by the
behavior of propensity score estimators within the trimming indicator. While /n-rate
estimation or valid inference may be possible under parametric models for the propen-
sity scores or with specific nonparametric assumptions and estimators, general guarantees
are unavailable. Therefore, we will focus on smooth trimmed effects, which are pathwise
differentiable and allow for the construction of y/n-consistent and asymptotically normal
estimators under nonparametric assumptions by leveraging nonparametric efficiency the-
ory and efficient influence functions [Bickel et al., 1993]. We will first establish the efficient
influence function for the S-flip effect and then we will use it to construct a multiply robust
and sequentially doubly robust estimators.

5.1 Notation

To facilitate exposition, we refine our notation. First, we let

re(be | he) = 5 Qi(by | hyt)

(At =t | hy) (5)

be the ratio of the interventional propensity score and the true propensity score and let
ro =1 and Qri1(Ary1 | Hry1) = 1. Then, we let mp 1 =Y, mp(bp, Hr) = E(Y | Ay =
br, Hr), and recursively define

my(be, he) =B myga(berr, Horn)Quia (g | Hisr) | Ay = by, Hy = Iy (6)

bty

as the sequential regression function for ¢t < T'.

5.2 Efficient influence function

The identification result in Theorem 1 suggests a “plug-in estimator” by plugging estimates
of the relevant nuisance functions into each of the relevant formulas and then taking a
sample average. With well-specified parametric models for the nuisance functions, the plug-
in estimator can achieve /n-convergence rates. However, if the models are mis-specified,
the plug-in estimator can be biased [Kang and Schafer, 2007, Vansteelandt et al., 2012].
Meanwhile, if the nuisance functions are estimated with nonparametric methods, the plug-
in estimator will typically inherit slower-than-y/n nonparametric convergence rates. This
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motivates estimators based on nonparametric efficiency theory [Bickel et al., 1993, Tsiatis,
2006, van der Vaart, 2000].

The first-order bias of the nonparametric plug-in can be characterized by the efficient
influence function of the functional, which can be thought of as its first derivative in a
von Mises expansion [von Mises, 1947]. The efficient influence function can be used to
construct estimators that can achieve y/n-convergence with nonparametric estimators for
the nuisance functions. The next result establishes the efficient influence function of the
S-flip effect.

Proposition 5. Let ¢ denote an identified S-flip effect from Theorem 1 where si(-;e,k) is
twice differentiable with non-zero and bounded derivatives. Moreover, let

¢t(bt;At7Ht) = {1<At = at) - ]P(At = a¢ ‘ Ht)}SQ{P(At = ag ‘ Ht);gtakt}{l(bt = at) - P(At = bt ’ Ht)}
+ {1(At = bt) — P(At = bt | Ht)} [1 — St{P(At = a¢ | Ht);Et,k’tH

where sy(x;e,k) = %st(a:;s, k). Further suppose that the outcome Y has bounded variance
and the S-flip is constructed such that ry(Ay | Hy) is bounded. Then, the centered efficient
influence function of ¥ under a nonparametric model is

o(Z) = om(Z) + vq(Z) where

T (1

om(Z) = {Hrs(As | Hs)} > miesr(bepr, Hi) Qe (beyr | Her) —me(Ar, Hy) o
=0 (s=0 bepa
T (i-1

eQ(Z) = Z {H rs(As | HS)} th(bta Hy)pr(be; Ae, He).
t=1 \s=1 bt

The efficient influence function in Proposition 5 follows a typical structure: ¢(Z) con-
sists of a plug-in estimator minus the true functional, plus weighted residual terms. The first
component, ¢, (Z), represents the efficient influence function that would arise if Q;(A; | Hy)
were known and did not require estimation. The second component, ¢g(Z), emerges from
the necessity of estimating this quantity. For the S-flip effect in Proposition 5, ¢g(Z)
mirrors the form found in the IPSI [Kennedy, 2019, Theorem 2].

The result requires bounded variance of ¢(Z), which is guaranteed if Y has bounded
variance and ry(A4; | Hy) is bounded for all ¢ < T. The boundedness condition on 7, can
be guaranteed through appropriate construction of the smooth trimming indicator. For
instance, choosing s(z) = 1 — exp(—kx) ensures r(A; | Hy) = % is bounded since

s(z)/z < k.
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5.3 Multiply robust-style estimator

The efficient influence function in Proposition 5 naturally suggests a multiply robust-style
estimator.

Algorithm 1 (Multiply robust-style estimator). Randomly split the data into K folds,
denoted by {Zk}kK:r Fork=1to K:

1. Let UjzZy be the training data Zy, be the evaluation data.

2. In the training data, regress Ay on Hy and obtain propensity score models @,k(At | Hy).

3. In the evaluation data, compute the interventional propensity scores @k(At | Hy),
ratios Ty (A¢ | Hy), and efficient influence functions ¢ (be; A, Hy) for all subjects
and timepoints using P_p(A¢ | Hy).

Fort=T tot=1:
1. Fork=1 to K:

(a) If t = T, then ﬁTH(HTJrl) =Y. Otherwise, pseudo-outcome ﬁt+1(Ht+1) 18
available from previous step in loop (see step #2 below).

(b) Regress ]3t+1(Ht+1) against Ay and H; in the training data to obtain models
my,—k (Ag, Hy).
(¢) In the evaluation data, obtain predictions my (0, Hy), My (1, Hy).

2. 1/4\07"055 the full data, compute pseudo-outc/o\mes
Py(Hy) = my(0, Hy)Qe(0 | Hy) + my(1, H)Qi(1 | Hy) to use in next step.

Then,

1. Compute the plug-in estimate mg = Pn{ﬁl (X1)} using the last pseudo-outcome from
the prior loop.

2. For all subjects in the data, compute the centered efficient influence function values
as

T t
p(2)=Y {H’?s(As | Hs)} > g1 (besr, Hiyt)Qegr (b | Hipr) — u(Ar, Hy)

bt41

T (t-1
+ Z {H 7s(As | HS)} th(btv Hy) ¢y (by; Ay, Hy)

by

where
at(bt;AtaHt) = {1(At = at) — @(At = Q¢ ’ Ht)}SQ{@(At = Q¢ ’ Ht)7 kt}{l(bt = at) — I/[?)(At = bt ’ Ht)}
+ {1(At == bt) - I/EB(At == bt | Ht)} [1 — St{@(At = a¢ ‘ Ht),kt}]
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Finally, output the point estimate and variance estimates

¥ =g + P {P(2)} and
o2 =P, {3(2)*}

Algorithm 1 constructs an estimate of the efficient influence function by first estimating
{@t}le and then working sequentially from ¢t = T to t = 1 to estimate {;}. ;. This
sequential regression formulation is the same as in Kennedy [2019], and uses an estimated
pseudo-outcome Py q(Hyi1) in a regression to estimate my(Ay, Hy). An alternative is the
targeted maximum likelihood estimator (TMLE) in Diaz et al. [2023], which offers the same
asymptotic guarantees. Algorithm 1 also employs sample splitting and cross-fitting to avoid
relying on Donsker or other complexity conditions on the nuisance function estimators
[Chen et al., 2022, Chernozhukov et al., 2018, Robins et al., 2008, van der Vaart and
Wellner, 1996, Zheng and van der Laan, 2010]. Therefore, we are agnostic to the choice of
regression method.

5.3.1 Multiply robust-style convergence guarantees

The next result provides the primary convergence guarantee for this estimator: a bound on
its bias. We then show that the estimator satisfies a rate multiply robust-style result, in the
sense of Rotnitzky et al. [2021], describing when y/n-efficiency and asymptotic normality
hold.

Theorem 3. Under the setup of Proposition 5, let 12 denote a point estimate from Algo-
rithm 1 and let

o my(Ay, Hy) =E {Ebtﬂ g1 (b1, Higr) Qe (besr | Hegr) | At>Ht} and
o 7(Hy) =P(A =1| Hy).

Suppose 3 C < oo such that P{fht(At,Ht) < C} = ]P’{mt(At,Ht) < C} =1 fort <T.
Then,

(5| <o

|17 — mel[ |7 — mu|l + 17 — me|?,

E

o~
Il

1

E

t t
g = el (D 175 = moll) + 7 = mill (3 17, wsn)}.
s=1 s=1

Theorem 3 provides a crucial bound on the bias of the multiply robust-style estimator.
Under the assumptions of Proposition 5, we only require that both the true and estimated
regression functions m; and m; are bounded. This result provides three new contributions:

t=1
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1. Simultaneous bounds on the bias. We establish that two bounds hold at once,
so the bias can be bounded by their minimum. To our knowledge, this is novel.
This arises because the total bias decomposes into a sum of errors from t = 1 to
t = T, with the first part of the minimum obtained by decomposing the error at
future timepoints via the sequential regression m;, and the second by decomposing
the error at past timepoints via {@5}s§t.

2. Extension of Diaz et al. [2023, Theorem 3]. The first part of the minimum ex-
tends Diaz et al. [2023, Theorem 3] to a one-step estimator and to dynamic stochastic
interventions with unknown ;. In this setting, the dependence on future timepoints
s >t is contained in ||m; —my||, which captures the errors from sequential regressions
from s = T to s = t, as well as from the propensity scores {@S}S>t that define the
pseudo-outcomes. Our bound is new in explicitly incorporating ||7t; — 7¢||?, reflecting
the fact that the interventional propensity scores must be estimated.

3. A tighter bound than Kennedy [2019, Theorem 3]. The second part of our
bound depends only on the sequential regression error at time ¢, ignoring pseudo-
outcome estimation. Specifically, it involves ||m; — my||, whereas Kennedy [2019,
Theorem 3] upper bounds the same term by ||m; — my||, which implicitly includes
additional error from future propensity scores and sequential regressions (as discussed
in point 2.).

This bound on the bias indicates when weak convergence is possible.

Corollary 1 (Multiple robustness and weak convergence). Under the setup of Theorem 3,
let 5% be a variance estimate from Algorithm 1. Suppose || — ¢|| = op(1) and

T
min { D I = mlllli — mell + 17— ),
t=1

T t t
S = il (3 I = mall) + 17 = mell (D 17 —wsn)} = op(n~1/?)
t=1 s=1 s=1

@ (1 = 9) ~ N(0,1). (7)

Corollary 1 provides a multiply robust-style guarantee, showing conditions under which
the estimator achieves root-n convergence to a Gaussian limit. Specifically, the first re-
quirement ensures that the estimated efficient influence function is consistent, and the
second is the crucial multiply robust-style bound on the bias. In particular, the product of
the nuisance estimation errors from Theorem 3 must converge to zero at a rate of n=1/2.
This condition is achievable under nonparametric assumptions on the nuisance functions

Then
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(e.g., smoothness, sparsity, or bounded variation), where each nuisance function can be
estimated at a n~!/* rate [Gyorfi et al., 2002].

Remark 2. Corollary 1 can be extended to a range of smoothing parameters {ki, ..., kx},
yielding a uniform convergence result as in Kennedy [2019, Theorem 3], under slightly
stronger assumptions than those in Corollary 1. This is feasible provided the efficient
influence function ¢(Z) from Proposition 5 is sufficiently smooth in the smoothing param-
eter. For instance, the smoothing function s(z) = 1 — exp(—kx) and other related choices
satisfy this requirement.

Remark 3. When @y is unknown, a “model multiply robust-style result” for consistency
(in the sense of Rotnitzky et al. [2021]) is less immediately interesting than in settings
with known Q;. When Q; is unknown, consistent estimation of {m;}]_; is necessary, but

is also sufficient, to guarantee LZ L 1. However, Theorem 3 implies a new result when Q)
is known: 2(7 + 1) model multiple robustness; see, e.g., Diaz et al. [2023, Lemma 2] for
details on 1"+ 1 model multiple robustness.

5.4 Sequentially doubly robust-style estimator

The multiply robust-style estimator can be improved to a sequentially doubly robust-
style estimator. One can gain intuition for how this is possible by examining the esti-
mated pseudo-outcome ]3t+1(Ht+1) in Algorithm 1. Notice that regressing ﬁt+1(Ht+1) =
M41(0, Hyy1)Qe(0 | Hygr) + myy1 (1, Hyy1) Qe (1| Hyy1) against { Ay, Hy} corresponds to
using a plug-in estimator for m¢ (A, H¢). This estimator can be improved by debiasing this
pseudo-outcome. For sequential regressions with longitudinal data, this was first observed
in Luedtke et al. [2017] and Rotnitzky et al. [2017], and recently extended to LMTPs in
Diaz et al. [2023]. This general approach — debiasing a pseudo-outcome — has also been
applied to conditional effect estimation, continuous dose-response curve estimation, and
censoring [Kennedy, 2023, Kennedy et al., 2017, McClean et al., 2024a, Rubin and van der
Laan, 2007]. An adaptation of the estimator in Algorithm 1 is inspired by the following
lemma.

Lemma 1. Under the setup of Proposition 5, defineY = mpyq = ZbT+1 mr41 (Qr+1 + d141)
and recursively define fort =T tot =1

Pt*(Z) = th(bt,Ht){Qt(bt | Hy) + ¢t(bt§At,Hz)}

by

k= bsy1

T s
+ Z { Tk(Ak | Hk)} {Z ms+1(bs+17H5+1){Q5+1(bs+1 ‘ Hs+1) + ¢s+1(bs+l; As+17H5+1)} - mS(AS7H5)} .
s=t t

Then,
E{P1(Z) | A, Hi} = mqi(Ay, Hy). (8)
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~ T ~
Moreover, suppose access to fired nuisance estimates {ﬁz* Qs} to construct P} (Z).

s s=t+1
Then,
E{Pry(2) = mu(Aw Hy) | Ary Hyp =

S E

s=t+1

{ T 7] Hk>} {maCa 7o) = A H) N7 (A | H) = r(As | ) || dr

k=t+1

T s—1
+ > E { I 7(Ax | Hy) }Z “(As, Hy) {@S(bs|H5)+$S(bs;AS,HS)—QS(bS|H8)}|At,Ht

s=t+1 h=t+1
(9)

This lemma proposes the debiased pseudo-outcome, P;", then shows that it is indeed
unbiased (in (8)) and that its error, if it were estimated, is a product of errors (in (9)).
This mirrors Lemma 1 in Diaz et al. [2023], Lemma 1 in Luedtke et al. [2017], and Lemma
2 in Rotnitzky et al. [2017]. However, this result is new because it accounts for the error in
estimating the interventional propensity score @, from which the second term in the bias
decomposition in (9) arises. This result inspires a new, sequentially doubly robust-style
estimator, which amends Algorithm 1.

Algorithm 2 (Sequentially doubly robust-style estimator). Use Algorithm 1 with the fol-
lowing amendments to the sequential regression loop:

o In step 1(a), let ]3}+1(Z) =Y.
o Instep 1(b), regress t+1(Z) against Ay and Hy and label these models my _ (At, Hy).
o In step 1(c), label the predictions in the evaluation data my, (0, Hy),m; (1, Hy).

o In step 2, when constructing pseudo-outcomes, use the transformation ﬁt*(Z) which
T

uses available nuisance estimates {’fﬁ:, QS} .
s=t+1

Finally, construct a point estimate and variance estimate as
V" =My = Po{P{(2)} and
n

~2 ~ %12
0= [{Pl —my }

The estimator is similar to the multiply robust estimator in Algorithm 1, but uses the
debiased pseudo-outcomes and debiased sequential regression estimates. A consequence of
this is that ]31* (Z) already takes the same form as the un-centered efficient influence function
from Proposition 5 and the point estimate and variance estimate can be constructed using
ﬁl* (Z), rather than constructing an estimate of the efficient influence function.
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5.4.1 Sequentially doubly robust-style convergence guarantees

The next result gives the sequentially doubly robust-style properties of the estimator.

Theorem 4. Under the setup of Theorem 3, let 12* denote a point estimate from Algo-
rithm 2 and let mf(As, Hy) = E { At*H(Z) | Ay, Ht}. Moreover, suppose 3 C' < oo such that
P{m; (A, H) <C} =1 fort <T. Then,

T
B (& = )| S Yo7 = mll (I = il + 17 = mll).
t=1

Theorem 4 shows that the estimate is sequentially doubly robust-style, in that its bias
can decomposed as a sum of errors across timepoints where the error at each timepoint only
depends on the propensity score at that timepoint and the sequential regression estimate at
that timepoint. Note that ||m; —m;|| only captures the error from the sequential regression
at t; there is no dependence on s > t through the pseudo-outcome. Therefore, we have the
following asymptotic convergence guarantee.

Corollary 2. Under the setup of Theorem 4, let 52 be a variance estimate from Algorithm 2.
Suppose || Py — Pf|| = op(1) and

T
S 17 = mill (Il = il + 117 = mll) = op(n ™72,
t=1

\/;TQ(@Z_ ¥) ~ N(0,1). (10)

Corollary 2 provides a sequentially doubly robust-style guarantee for weak convergence.
It improves on Corollary 1 because it only requires the nuisance estimators converge at a
rate of n=1/2 in product at each timepoint. There is no dependence across timepoints,
unlike in Corollary 1.

Then

6 Ongoing work

In ongoing work, we are developing methods for flip and S-flip effects with administrative
censoring and censoring by death. We will apply these methods to analyze the effect of
corticosteroid use on mortality for patients with moderate to severe COVID-19 using a
retrospective cohort of patients at NewYork-Presbyterian Hospital during Spring 2020, at
the beginning of the pandemic. Future versions of this manuscript will include this data
analysis.
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Appendix

This appendix contains the following sections:
Appendix A provides proofs for the results in Section 2.
Appendix B provides proofs for the results in Section 4.

Appendix C provides proofs for the results in Section 5.

A Proofs for Section 2: Propositions 1 and 2
Proof. For Proposition 1, we have
E[Y{D(1)} - Y{D(0)}] = IE(E [Y{D(1)} | XD - IE(IE [Y{D(0)} | X])
- E{E(E[Y{D(l)} | D(1), X] | X)} - E{E(E [Y{D(0)} | D(0), X] | X)}
- E[E{Y(l) | D(1) =1, X}P{D(1) =1| X}
+E{Y(0) | D(1) =0, X }P{D(1) =0 | X}}
- E[]E{Yu) | D(0) =1, XP{D(0) =1| X}
~E{Y(0) | D(0) = 0, X }P{D(0) =0 | X}}
- E[E{Y(l) | XYP{D(1) = 1| X} + E{Y(0) | X}P{D(1) = 0 | X}}
~E[E{Y(1) | X}P{D(0) = 1| X} + E{Y(0) | X}P{D(0) = 0 | X}
—E (E{Y(l) | X} [IP’{D(l) =1|X}—P{D(0)=1] X}])
+E (E{Y(O) | X} [IP’{D(l) —0|X}—P{D(0)=0] X}])

where the first line follows by iterated expectations on X, the second by iterated expectations
on X and D(1) and X and D(0), the third by the definition of expectation, and the fourth by
exchangeability and the definitions of D(1) and D(0). Let 1(X) = 1{e < n(X) < 1 —¢}. Then, by
the law of total probability over A,

P{D1)=1|X}=7n(X)+1(X){1 —7n(X)} =1(X)+7(X){1 - 1(X)},
X

)
P{D1) =0 X} ={1-1(X)H{l —n(X)} =1—-1(X) — n(X){1 - L(X)},
P{D(0)=1| X} =7(X){1—-1(X)}, and
P{D(0)=0| X} =1—m(X){1 - 1(X)}.
Therefore,
P{D(1)=1| X} -P{D(0) =1| X} = 1(X)
and

P{D(1)=0|X} -P{D(0)=0] X} =—-1(X).
Plugging these back into the display above yields

E[Y{D()} - Y{D(0)}| = E ([E(y(1) | X} — E{¥(0) | X}]1(X)).
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The result follows by iterated expectations on X.

The same argument follows for Proposition 2, but noting that

P{D(1) = 1] X} = n(X) + {1 — n(X)}S(X),
P{D(1) = 0] X} = {1 - n(X) {1 - S(X)},
P{D0)=1|X}=n(X){1—-95(X)}, and
P{D(0) =0 X} =1 —7(X){1 - S(X)}

and canceling terms. O

B Proofs for Section 4

For the identification results, we provide several helper lemmas. We also slightly amend our notation
from the main paper, so we can specify the dependence of random variables on the counterfactual
past interventions. In what follows, let

e {D1,Dy(Dy),...,Dp(D7_1)} denote a set of treatment decisions where
Dy(Dy—1) = fi{Ay(Dy_1), H(Dy_1),V;} for some deterministic function f;, where Vi,..., Vp
are mutually independent and V; 1L Z for all t € {1,...,T},

. Yt(at,l) denote the natural covariate history under an intervention that sets treatment to
a;_1 up until time £ — 1,

o Hi(ai—1) = {Yt_l(ﬁt_l),ﬁt_l = Et_l} denote the natural covariate history and the inter-
vention treatment history,

o Ai(a;—1) denote the natural value of treatment after history Hy(a;—1),
o Dy(@-1) = fi{Ae(@-1), Hi(ai—1), Vi}, and

e Y(@;,D;,,) denote the potential outcome under an intervention that sets treatment a@; up
until time ¢ and assigns treatment according to treatment decisions
Qt—i—l = {Dt—l—l (at), Dt+2(Dt+1,at), L DT(at, Dt+1, ey DT—I)} thereafter.

Proposition 6. Conditional on {X; 1, A; 1 =b;_1},
o Hy(be—1) = {X¢, A4—1 =bi—1} and
o Ay(bi_1) = Ay
Proof. These follow by the consistency assumption in the NPSEM. 0

Lemma 2. Under Assumption 2,

Ap(ar—1) LY (as, Dyyy) | Hi(@r—1) and
Dy(@—1) LY (@, Dyyy) | Hi(@p-1)

Proof. Conditional on Hy(a;—1), A¢(at—1) only depends on the random variable Uy ;. Meanwhile,
Y (@, Dyyq) depends on (U 4 441, U x 441, Uy). The first result follows by Assumption 2. The second
result follows by Assumption 2 and the assumption on V. ]
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Lemma 3. Under the setup of Theorem 1, P{P(A; =b; | Hy) =0 = Qu(by | H;) =0} =1 for
by € {0,1} for both flip and S-flip interventions.

Proof. For flip interventions, when a; is the target treatment
Qilay | H) =P(Ar =ay | Hy) + {1 —P(A; =1 — ay | He) }y(ay; Hy).
By construction, P(4; = a; | H;) =0 = Ii(as; Hy) = 0; therefore, P(A; = a; | H;) = 0 implies
Qi(a; | H)=0+1-0=0.
Meanwhile, P(A; = 1 — a; | H¢) = 0 implies
Qilar | H)=1+0=1
which itself implies Q+(1 — a; | H¢) = 0.

The same argument holds for S-flip interventions as long as Si(as; H) = 0 whenever P(A4; =
a; | Hy) = 0, which holds by construction of the smooth trimming indicator. O

B.1 Proof of Theorem 1

Finally, we have the full proof of the main theorem.

Proof. First, we have
E{Y(Dr)} =E[E{Y(Dr) | X,}] = E[E{Y(Dr) | D1, X1} | X1]

—E[S E{Y(b1,D,) | D1 = b1, X1 }P(D; = by | Xl)]
2

=E| S E{Y(b1,D,) | Ar = b1, X1 }Qu (b1 | Xl)}
2

= Z/X E{Y(bl,Qz) ’ A1 = bl,wl}Ql(bl | a:l)d]P’(xl)
by 1

where the first line follows by iterated expectations on X7 and X; and D1, the second by taking the
expectation over D1, the third by Lemma 2 in the inner expectation and by the definition of D; in
the outer probability and Proposition 6 to identify the counterfactual trimming indicator, and the
fourth by linearity of expectation and definition. Note that, by Lemma 3, the outer expectation is
well-defined. The inner expectation might not be well-defined, but Q1(by | 1) = 0 whenever that
occurs.

The rest of the proof will follow by induction. We address the ¢t = 2 step. We have
E{Y (b1, Dy) | A1 = b1, X1} = E[E{Y (b1, Dy) | Xa(br), A1 = br, X1} | A1 = by, X1
= E[E{Y(thQ) | Ha(b1)} | A1 = bl,Xl}
—E| Y E{Y (br,b2, Dy) | Da(br) = ba, Ha(b) YP{Ds(b1) = bz | Ha(br)} | A1 = by, X1

bo
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= E[ZE{Y(bl,bQ,Q3) ’ AQ(bl) = bQ,HQ(bl)}QQ(bQ ‘ bl,YQ) ‘ A = bl,Xl]
b

= ZE[E{Y(blab%QZi) | Ag = by, X, A1 = b1, X1}Q2(b2 | b1, X2) | A1 = bl,X1}
b

where the first line follows by iterated expectations on Xy(b1), A1 = b1, X1, the second line by
Proposition 6, and the third by iterated expectations on Dy(bs), H2(b1) and then taking the ex-
pectation over Dg(by). The fourth follows by Lemma 2 inside the expectation; meanwhile, the
probability @9 is identified by Proposition 6. The final line follows again by Proposition 6. Again,
note that by Lemma 3, the outer expectation is well-defined. The inner expectation might not be
well-defined, but Q2(bs | H2) = 0 whenever that occurs.

Repeating this process ¢ — 2 more times yields

E{Y(Dr)}= > / E{Y () \AT:bT,XT:xT}HQt bi | br—1, Ty)dP (1 | bro1, Tya)-
bre{01}7 " T =1

The final result follows by the consistency assumption embedded in the NPSEM. O

B.2 Proposition 4
Proof. We have

E{Y (Dr)} [ZE{Y br) | Dr = by, A, U }P(Dr = by | AT,HT)}
by
=E [ > E{Y (br) | A, Ur}P(Dr = br | Ar, HT)}
by

where the first line follows by iterated expectations on Ar, Il and then on D7, A7, Il and taking
the expectation over Dy, and the second line follows because Dy 1L Y (br) | Ay, because D is
a deterministic function conditional on Ap, Ilp.

The same holds for E{Y(E/T)} Then,

E{Y(Dr)-Y(Dp)} =Y E [E{Y(ET) | A7, X0 H{P(Dr = br | Ap,Tiz) — P(Dy = by | ZT,HT)}] -

br

The difference in propensity scores is just a deterministic function; indeed, for the trimming function
II7, by the definition of Dy and D,T, it satisfies

P(Dr = by | Ay, 17) — P(Dyp = by | Ap, p) = {1(by = ar) — 1(by = @) {7
Therefore,

E{Y (Dr) - Y (D7)} = E (|[E{Y (ar) | Ar,Tir} — E{Y (ar) | Ar, Tz} |TI7).

The result follows by iterated expectations on Ap, Il7. O
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B.3 Theorem 2

Proof. Suppose towards a contradiction that one could define treatment rules that only depend on
current and past information. Then, the treatment rules {Dq,..., Dy} would yield interventional

propensity scores

{P{D; = a; | H(Dy—1)}}{—,

for a; € {0,1}. By sequentially applying iterated expectations (but not identifying the g-formula),

we have

E{v(Dr) - Y (D)}

:ZE
br

t=1

T T
Y (br) {HP{Dt = by | H(Br1)} = [[P{D; = bt | Ht’(btl)}}] :
=1

In order to guarantee E{Y (Dr) — Y(E;“)} = 9(ar,ay), it must be the case that

L T2y P{D: = a | Hy(@—1)} = [12, P{D; = a | Hi(@—1)} = I,

2. HtT:1 P{D; = a; | Hy(a;_,)} — HtT:1 P{D} = a; | Hy(a;_,)} = —1lr, and

3. [T P{Ds = by | Hy(by—1)} — [T,_1 P{D} = by | Hy(bi—1)} = 0 for br ¢ {ar,a}.

In what follows, let ¢r = {aq,...
trimming occurs, so that P(II;) —

,1 —as,asy1,...ar}, where s is the timepoint where additional
P(IIs) > 0. Note that ¢r ¢ {ar,a’} by the assumption of the

theorem that @; # @ for t < T. Then,

T T
My = [[P{D: = ar | Hi(@—1)} = [[PAD; = as | Hi(@-1)}

t=1

t=1

= TIP{D: = a; | H@1)} = [[ PAD; = as | H(@1)}

t#s

t#s

— [1=P{Ds = as | Ho(@1)}] [[P{D: = a; | Hy(@-1)}

t#s

T+ [1-P{D, = a, | Hy(@-1)}] [[P{D} = ar | Hu(@r-1)}

t#s

= [IP{D: = a; | H(@1)} = [[ PAD; = as | Hi(@1)}

t#s

t#s

~P{Ds=1-a,| Ho@1)} [[P{D: = a | Hi(@1)}

t#s

+P{D, =1 a, | Hy(@ 1)} [[P{D} = a0 | Hi(@1)}

t#s

=[IP{D: = ar | Hi@1)} — [[P{D} = a: | Hi(@1)}

t#s

t#s

~P{Ds = cs | Ho(@-1)} [[P{D: = ¢ | H(@-1)}

t#s

+P{D, = ¢ | Ho(es-1)} [[P{D} = et | Heler-1)}

t#s
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= [[P{D: = ar | Hi@1)} — [[P{D} = a | Hi(@i1)}

t#s t#s
T T
—[IP{D: = e | Hi(er1)} + [ [ PADS = es | Ho(@s-1)}
t=1 t=1
= [IP{D: = a: | Hi(@1)} — [[P{D; = a | Hi(@i1)}
t#s t#s

where the first equality follows by the first condition above, the second by adding and subtracting
[1 —P{Ds = as | Hy(@s—1)}] and [1 — P{D} = as | Hs(as—1)}], the third by the definition of ¢
above, and the final line by the third condition above.

Reaching a contradiction. The analysis above implies that the product of trimming indicators
II7 is equal to the product of propensity scores without including the interventional propensity
score at timepoint s. However, by assumption we know that trimming occurs at timepoint s, and
therefore with positive probability this equality cannot hold, because the right-hand side does not
account for trimming at timepoint s. Hence, we have reached a contradiction. O

C Proofs for Section 5

C.1 Helper lemmas of efficient influence function of @),
We begin with several general helper lemmas.
Lemma 4. Under the setup of Proposition 5, om(Z) and ¢g(Z) are mean-zero.

Proof. This follows by iterated expectations on H;. O

The next two lemmas are about the efficient influence function of E{Q:(b; | Hy)} and its
estimator as constructed in the body of the paper.

Lemma 5. Under the setup of Proposition 5,
E{¢¢(b; Ar, Hy) | He} = 0.
and
E{gtthAtyHt) | Hy}
= {P(Ay = ar | Hy) — B(A = ar | Hy) by {B(Ar = ay | He)i k(b = ar) = P(A; = by | Hy)}
+{P(Ay = by | H) —P(Ay = by | H)}[1 — se{P(As = az | Hy); ke }]
Proof. These follow by iterated expectations on Hy. O

In the next lemma we omit arguments for brevity, so that Py(a;) = P(4; = a; | H;) and
st(ar) = s¢{P(Ay = ay | Hy)} and Py(at) and 5;(ay) are defined similarly.

Lemma 6. Under the setup of Proposition 5,
E{¢¢(bi; Av, Hy) + Qelby | Hy) — Qulby | Hy) | Hy} =
_ (;gt/(at) [{Bu(ar) — Pr(a)}?] + o[ {Br(ar) - ]P’t(at)}ﬁ]) {]@t(bt) (b = at)}
+ {Py(by) — Pe(be) Hse(ar) — Si(ar)}
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Proof. By adding zero and rearranging,

E{&t(bt;At,Ht) =+ @t(bt | Hy) — Qq(be | Hy) | Hy}

- {IP’(At = ap | Hy) — P(A; = at | Ht)}s;{@(At = ay | Hy): k3 {1(b = ay) — P(A; = by | Hy))
+ {@(At == bt | Ht) - P(At == bt ‘ Ht)} [1 - St{@(At = a¢ | Ht), k’t}]
(b = an)si{P(Ay = ag | Hy); key + [1 — s, {P(A; = ay | Hy); kt}}@(At — b, | Hy)
(b = ar)s {P(Ay = ag | Hy): k) — [1 — s {P(Ay = a; | Hy); kt}}P(At = by | Hy)

= {Pi(a¢) — @t(at)}gft(@t){l(bt = ar) — Pi(be)}
+ {Pu(be) — Pu(be) H1 — s(ar)}

+ l(bt = at)st at) + {1 — st(at)}IP’t(bt)
— 1(bt = at) St at) {1 — st(at)}IP’t(bt)
) =

— 1(b —at)[{Pt ar) — Py(ar) }5(ar) + Siar) —st(at)}
— {Py(ar) — Py(ar) }3,(ar)Py(be) + {Pu(bs) — Py(be) }{1 — 5e(ar) }
+{1—§t<at>}@t<bt> {1 = si(ar)}Pu(br)
(ar) }34(ar) + Bilar) = si(ay)]

Py
(
(
(

= 1(bt = ay {Pt((lt) ]P)t at }St + St( ) - St(at):|

where the first and second lines follows by definition, the third through sixth lines by canceling
terms and adding zero.

Second-order Taylor expansions of s{P(A; = a; | H;)} yield the result. For the first term in the
final display above:

Lo = a0) | {Piar) = Pilan) }5(ar) + Si(ar) = su(ar)]
= 100 = a) ({Bular)  Balon) }55(an) + 5ln) — Falor) — 5(a0) {Filr) — Bula)
— SF ) [{Biar) — Bu(a) ] — o[ (o) — Bu(a))?))
— 101 = a0) 37 (a0) [Bofar) — Bula)] + ol Bua) ~ B(a0)¥) )
By essentially the same argument, the second term yields

Pe(be) | st(ar) — Bi(ar) — 51(ar) {Pe(ar) - Pr(ar)}
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= @t(bt) (;gg(at) [{]/P\)t(at) - Pt(at)}Q} + 0[{]@1‘/(%) - Pt(at)}2]>
from which the result follows. O

C.2 Proposition 5 and Theorem 3

Now, we turn to establishing Proposition 5 and Theorem 3. As discussed in the body of the paper,
this can be established in two ways, by unwinding the error backwards-in-time or forwards-in-time.
We start with lemmas for the backwards-in-time bound, which is similar to Lemmas 5 & 6 in
Kennedy [2019]. We establish the result in full, for two reasons. First, for completeness. And
second, our analysis yields a different bound on the bias. Then, we establish the forwards-in-time
bound. This mirrors results in Diaz et al. [2023] and others, but is new because it accounts for
estimating the Q.

In what follows, let m(A;, Hy) = E {me o1 (berts Hep1) Qi1 (bt | Hygr) | At,Ht} as in

the body of the paper. In other words, m; is the true sequential regression function at timepoint ¢
where all the future information is estimated.

C.2.1 Backwards-in-time lemmas

Lemma 7. Under the setup of Proposition 5,

E{pm(2)} = mo — o

T ¢ ¢
+) E {H Po(As | Hy) = [ re(As | HS)} (e (Ay, Hy) — iy (Ay, Hy)}
t=0 5=0
T _
+ ZE {H (As | Hy) }th(btht){@t(bt | Hy) — Qi(be | Hy)}
t=1 bt
Proof. We have
0 ¢ R
E{@m Z {H 7’s A \ H, } th+1(bt+17 Ht+1)Qt+1(bt+1 \ Ht+1) - fflt(At, Ht)
t=T b1

0 t
— [Z{H? (A, ‘H)}{mt(At,Ht) mt(At,Ht)}]
{H? A | Hy) Hrs : }{mtmt,m) ﬁ%mtvﬂt)}]

0
Z {Hrs (As | Hs) } {mi(Ae, Hy) — mt(Ath)}]

where the first equality follows by definition, the second by the definition of m(A;, H;) and iterated
expectations on Ay, Hy, and the third by adding and subtracting HZ:O rs(As | Hs). On the RHS
of the final equality, the first line is second-order. Focusing on the final line in the above display,
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notice first that the first and last summands in the overall sum can be isolated and the sum can be
re-written as

0 t
£ [Z {HTS(AS | Hs)} {mt(At’Ht) - fﬁt(At’Ht)}]

t=T \s=0

T
=E {HrS(As | Hs)} ﬁlT(AT7HT)]
t=0
0 t t+1
+ Z E {HTS(AS ’ HS)}mt Atht {HTS A ’H }mt+1(At+1,Ht+1)]
t=T-1 s=0
_ fflo

The first term equals 1 because mp(Ar, Hr) = E(Y | Ar, Hr) and the last term is mg. Meanwhile,
the middle term in the above display simplifies because

t+1
E [{HTS(AS | Hs)} 'fr\Lt+1(At+1’Ht+1)]

s=0

t
{HTs(As | Hs)} E Q> i (besr, He1) Qe (b1 | Hepn) | Ar, Hy
s=0

bt+1

by iterated expectations on A;, H;. Combining like terms and the definition of m; yield

t t+1
{H Ts(As ’ Hs)} mt(Ata Ht) - {H Ts(As ‘ Hs)} mt+1(At+1a Ht+1)]

t=T-1 s=0 s=0
0 ¢ R
=) E {HTS(AS | Hs)} E{ > A1 (bt Her){ Qg (beg | His)
t=T-1 s=0 bit1

— Q1(ber1 | Heyr)} | AtaHt}]

T t—1
=Z {HTSA | Hy) }th(bt,ﬂm@(btIH»—Q,:(btrﬂa}

s=0 bt
where the last line follows by re-indexing the sum and iterated expectations on A;, H;. O

Lemma 8. Under the setup of Proposition 5,

E{pq(2)} = Z {1:[? (As | Hy) }th(bt,Ht)E{at(bt;At,Ht) | Hi}

be

t—1
+E Z {HTS (As | Hy) HTS(AS | Hs)} th(btaHt)E{ﬁgt(thAth) | H.}
s=1

t=T bt

1
+E(Y {H ro(As | Hy) } S (b, Hy) [E{1(be; As, Hy) | H} + Quby | H) = Qulbr | Hy)|

t=T bt
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&=

_l’_

>

t=T

t—1
{Hrs (As | H) }th@t | H){Qulbe | Hy) = Qulby | Hi) }

be

Proof. We have

1
E{@q(2)} =E {Z {H rs(As | Hs) }th(bt,ﬂt)at(bt;AnHt)]

t=T by

[ 1 (-1
=E | { Ts(As | Hs>} > ime(be, He)E{ e (be; Ar, He) | Hy}
_t:T s=1 bt
(1 (-1 R
=E {H rs(As | Hs) HTs (As | H) }th(bt,Ht)E{¢t(bt§AtaHt) | Hy}
| (=T \s=1 bt
1 (t—1 R R
+E {Hrs(As | Hs)} > iiva(br, Hy) [E{¢t(bt;At,Ht) | Hi} + Qulbe | He) — Qu(by | Ht)}
t=T \s=1 by
(1 (t-1 R
+E { ro(As | Hs>} S (b | Hi){ Qu(be | Hy) — Qi(br | Hy) |
_t:T s=1 by
where the second equality follows by adding zero several times. O

Lemma 9. Under the setup of Proposition 5,
E{®&(Z2)} = mo — Mo

T r t t
+Y E {H Po(As | Hy) = [ re(As | Hs)} {mi( Ay, Hy) — iy (A, Ht)}]
t=0 L

T t— t—
+ ZE { ?s(As ’ Hs) - ?”s(As | HS)} th(btht)E{ggt(bt;At’Ht) | Ht}]
t=1

bt

T t—1
+) E {H ra(As | Hs>} S (b, Hy) [E{1(bes Av, Hy) | He}+ Quby | H) = Qulbr| Ht)}) .

t=1 bt

Proof. The final lines in the display in the previous two lemmas cancel, yielding the result. O

C.2.2 Forwards-in-time lemmas

Lemma 10. Under the setup of Proposition 5,

E{am(z)} =mgy — T/flo

T t—1 [
+) E ({H Ts(As | HS)} > " {u(br, Hy) — my(be, Hy)} 7Dy | Hy) {]P)(bt | Hy) — P(b, | Ht)}
t=1 s=0 bt

|

|

T t—1 i
+Y E ({H?S(As | Hs)} > my(be, He) {@t(bt | Hy) — Qu(by | Ht)}
t=1 s=0

by
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Proof. We have

0 t
E{Gn(Z)} =E |) {H 7s(As | Hs)} > Aua(brr, Hip) Qe (bt | Heyr) — ma(As, Hy)
=T

s=0

{Ha Aers}

sS=

bi41

=E

_mO

1
T —
+ZE!{H (As !H} th(btht)@t(tht)ﬁ‘Lt(At,Ht)ﬂ(Ath)}

t=1 bt
T
K HSA|H)}Y — Mg
s=1
T t—1
+) E {H 7s(As | Hs)} > (i (br, Hy) — me(by, Hy) } 7i(by | Hy) {P(bt | Hy) — P(by | Ht)}
t=1 5=0 by

+
E
&=

[ (-1
{H?S(As ’ Hs)} th(bt,Ht)Qt(bt | Ht) - mt(At,Ht)?t(At \ Ht)}

s=0 bt

-
Il
fa

where the first line follows by definition, the second by rearranging the sum, and the third by adding
and subtracting m;. The second line in the final expression follows by taking iterated expectations
on H; and gather terms. We do not manipulate the second term in the final expression above any
further because it appears in the final result. Focusing on the final term, we have

T t—1
Y E {{HAS(AS | Hs)} {th(bt,Ht)@t(bt | Hy) — my(Ay, Hy)7 (A | Ht)}

bt

by

T t—1
= ZE ( Ts(As | Hs)} th(bt,Ht) {@t(bt | Hy) — Q¢ (by | Ht)}
T t—1
+) E ({ 7s(As | Hs)} > (b, H)Qu(be | He) p — ma(Ay, Hy)Ty(Ay | Hy)
bt

where the first equality follows by adding and subtracting (); and the second equality by iterated
expectation on H; and gathering terms, and the final line by adding and subtracting m;. The first
term in the final display appears in the result, so we manipulate them no further.

(I

t—1
{ 7s(As | H) } [th by, Hy) {Qt(bt | Hy) — Qu(by | Ht)}
s=0 bt

T t—1
+ ZE <{H?S(AS | Hs)} [mi(Ag, Hy) {re(Ae | He) — (A | Ht)}]>

s=0

Combining the left over terms, we have

T

ZE({HTSA ‘H }[mt At,Ht){’l"t(At’Ht)—Tt(At‘Ht )
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T t—1
=mg—) E [{ 7s(As | Hs)} {ma(As, Hi) = mupr (Avpr, Heon)reea (A | Hip) }re(Ay | Ht)]) — Mo
1

t=1 s=

= my — Mo

where the first equality follows by taking the first term out of the initial sum, which equals myg
because it is E{m1(A1, H1)r1(A1 | H1)}, and adding E [{Hle Ts(As | HS)} Y} into the sum and
combining terms, and the second equality follows by iterated expectations on H;. Combining all
the algebra above yields the result. O

Lemma 11. Under the setup of Proposition 5,

E{pq(2)} = ]
T t—1

+ Z]E {H?S(As | Hs)} Z {mq(by, Hy) — my(bs, Hy) } E {at(bt;AmHt) | Ht)} )
t=1 s=0 by

Ryl As | Hg} S b, Hy) { Qulbe | Hy) = Qilbr | Hy) +E {du(bis Ar, Hy) | Ht>}}D

|

1

T t
+Y E {
t=1 s=0

~
—

T
+ ZE {H (A | HS)} th(bt,Ht) {Qt(bt | Hy) — Qu(by | Ht)}
t=1

5=0 bt

Proof. We have

t—1
{H?S(AS | HS)} th(btht>$t(bt;At;Ht)

bt

I
tgq

7s(As | Hs)} th(btaHt)E{(Zt(bt;Atht) | Hy}
bt

W
Il
—

I
Dgﬂ

7s(As | Hs)} Z {04 (by, Hy) — my (b, Hy) Y E{ 1 (be; Ar, Hy) | Hy}
be

-
Il
—

+
N
=

-1
{H’?S(AS | Hs)} th(bt,Ht) [E{Zﬁt(bt;At,Ht) | Hy} + Qu(be | Hy) — Qu(by | Ht)})

be

#
Il
—

Dgﬂ

{f[mAs | Hs)} > mebe, He) { Qelbe | He) = Qi(be | H) |

+
t=1 s=1 bt
where the second equality follows by adding zero several times. O

Lemma 12. Under the setup of Proposition 5,

E{om(Z) + ()} = mo — Mo

T t—1
+> E ({H To(As | Hs)}
t=1 s=0

S {ie(be, He) = ma(be, H)} Folby | Hy) {P (0 | Hy) — B0 | 1)}
bt

|
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T t—1 i
+ ZE {H Ts(As | Hs)} Z {my(be, He) — my(by, Hy) } E {at(bt;At,Ht) | Ht)}
bt

T t—1
+>E {H Fu(As | Hs>} > mebr, He) { Qelbe | He) = Qilbe | Hy) +E { §4(bes Ar H) | Hy) |

by

Proof. The final lines in the display in the previous two lemmas cancel, yielding the result. O

Proof of Proposition 5

Proof. Lemmas 9, 5, and 6 imply that E{@p(Z) — ¢(Z)} is a second-order product of errors in
nuisance functions. By the same argument, the functional satisfies a von Mises expansion with
second-order remainder term. The result follows by Kennedy et al. [2023, Lemma 2], combined
with the fact that V{p(Z)} is bounded because the outcome has bounded variance and Qt(%t'g?))

is bounded by assumption.

C.3 Theorem 3

Proof. The minimum in the result will follow by taking the minimum of the two bounds we prove
below.

Backwards-in-time:
The estimator is P, {mo + ©(Z)}. Because we have iid observations, the bias then satisfies

E (4§ —v) =i + E{B(2)} - v = E{3(2)} + g — mo.

Then, by Lemma 9,

T B t t
E($-v) = E {HmAs | H,) — [ re(As | HS>} (e (Ar, Hy) — mt<At,Ht>}]
t=0 L Ls=0 s=0
T [ (t=1 t—1 R
+ ZE { ?S(As | Hs) - HTS(AS ’ Hs)} th(bt,Ht)E{¢t(bt;AtaHt) ‘ Ht}
t=1 i s=1 s=1 bt

T
+) E {H%A | Hy) }th bty Ho) [E{Gu(bes Avs Hy) | He} + Qulbr | Hy) = Qu(by | Hy)|
t=1

Note that r; is bounded by the construction of s;, while m; is bounded by assumption. Then, by
Holder’s inequality, Lemmas 5 and 6, the triangle inequality, and Cauchy-Schwarz:

T t
B (9= )| £ 30 30 I - el —
t=0 s=1
T t—1
+ZZ||1"S TsH(HPCLt) (at)|\+||@(bt)—IP>(bt)||>
t=1 s=1
T

+ > (IB(ar) = Plan)|* + [B(br) — PoA)1?).

t=1
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We can streamline this decomposition further, as in the statement of the result. First, note that
7o = 1o = 1 by definition. Second, with binary treatment, >, c 1y [P(ar) — Plas)[| < (|7 — m|

where m(H;) = P(A; = 1| Hy). Third, |75 — 7s|| < ||7¢ — me|| by Taylor expansion. Then, the final
line above simplifies to

T t T t—1

> 11 = ol - mtu+ZZst—munm—mu+2um—mn
t=1 s=1 t=1 s=1

T t
= 3 ST IR = mell (i = il + 17 = il )-

t=1 s=1

Forwards-in-time:
By the same argument above and Lemma 12,

E @-1/;) -
t—1

ZIE {HTSA | Hy) } S {ualbe, Hy) = m(br, Hi) Y7o | Hy) {P (0 | Hy) — Boy | Hy) }
s=0 by

T t—1
+ ZE {H Ts(As | Hs)} Z {m (b, Hy) — me(by, Hy) } E {Cgt(bt;At,Ht) | Ht)}
t=1 s=0 bt

T -1
+Y E {H 7s(As | Hs)} > mu(by, Hy) {@t(bt | Hi) — Qe(be | Hy) +E{$t(bt5AtaHt) | Ht)}}
t=1 s=0

bt

Note that 7; is bounded by the construction of s;, while m; is bounded by assumption. Then, by
Holder’s inequality, Lemmas 5 and 6, the triangle inequality, and Cauchy-Schwarz:

()| s §Tj e — mell[B(be) — P(bo)|
t=1
. ET: e — el (Ber) — Blan) + [B(be) — P(oo) )

+Z (IP(ar) — Plan) |12 + [P(v0) - B(b)]2).

We can streamline this decomposition further, as in the statement of the result. First, with binary
treatment, 3, 101y [[P(ar) —P(ar)|| S |7 —m¢|| where m¢(Hy) = P(Ar = 1 | Hy). Second, [T —r¢|| <
||m¢ — m¢|| by Taylor expansion. Then, the final line above simplifies to

)E (@/Z)\_ w>‘ N i (H?/?\”Lt —my|| + |7 — 7rt||>||%t — 7.

t=1
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C.4 Corollary 1
Proof. We have

) = =g + Pp{B(2)} — myg
= (Pr — P){0(2)} + (Bn — P)B(Z) — 9(2)} + o + P{B(Z)} — mo

¢
= (Pn — P){p(2)} + By — PY{B(Z) — 0(2)} + E(¢) — ).

where the first line follows by definition, the second by adding zero and because P{p(Z)} = 0,
and the third line by the definition of the estimator . The second term is OP(n*I/ 2) by Cheby-
shev’s inequality and the assumption that || — ¢|| = op(1) (cf. Kennedy et al. [2020, Lemma 2]).
Meanwhile, the third term equals the bias term in Theorem 3. This is o]p(nfl/ 2) by assumption.
Therefore,

To@; P~V = Ty B~ PHe@)} + o) NOD)

by the central limit theorem and because V{¢(Z)} is bounded because Y has bounded variance
and 7; is bounded.

Finally, note that 62 5 V{¢(Z)} because || — ¢|| = op(1). Therefore, the result follows by
Slutsky’s theorem. O

C.5 Lemmal

Proof. The first result follows by repeated applications of iterated expectations. Notice that the
residual terms are mean zero by iterated expectations, leaving only the plug-in term. Then,
E{é¢+1(bes1; Arr1, Hiv1) | Hi41} = 0 by Lemma 5. And finally, by definition,

E QY mest(bert, Heo1)Quit (b | Hir) | As, He § = muy( Ay, Hy).

b1

The second result follows by induction. Throughout, we will omit arguments. Starting with the
final residual, when s = T', we have

T T—1
E{( H ?k) (Y —mr) |At7Ht} ZE{< H ﬂ) (mT—mT)?T|At’Ht}

k=t+1 k=t+1
T—1
=E { < H ﬁe) (mp —mq) (Pr —r7) | AtaHt}
k=t+1
T—1
+E{< H ?k> (mT —T/)\lT)T’T ’ At,Ht}
k=t+1

where the first equality follows by iterated expectations on A7, Hy and the second by adding and
subtracting rp. The first term in the final expression appears in the result, so we manipulate it no
further. The next step is the induction step.
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Consider the second term in the display above and the penultimate residual, when s =T — 1.
We have

T-1 T—1
E{( H ﬂ;) (m7 —m7p)rr | At,Ht}—I-E ( H ?k) foLT(@T+¢AST)—fﬁT_1 | Ay, Hy

k=t+1 k=t+1 br

[/ 7—1
=FE ( H Tk Z(mT_mT)QT+ZmT(Q\T+$T>_mT—l | Ay, Hy

bT bT

br

> i <@T +ér — QT) | A¢, Hy

br

T-1
=E ( 7“%) > g (@T + o7 — QT) +mp_y —mr_y | Ae, Hy

T_
+E { < 1%) (mr_1 —mp_1) (Tr—1 —rr—1) | A, Ht}
k

=t+1
2

+E {( 1:[ ﬁ) (mp_1 — mp_1)rr—1 | At,Ht}

k=t+1

where the first equality follows by gathering terms, the second by iterated expectations and the
definition of my_1, and the third by adding and subtracting rr_1. The first and second lines in
the final display appear in the statement of the result. The third line can be combined with the

earlier residual, for s =T — 2 using the step we just outlined. This argument can be continued all
the way to s =1 + 1.

For the final step, when s = ¢ + 1, we will be left with

E |(miy1 — o)) rerr + Y i (@t+1 + $t+1) | Ae, Hy | — my(Ar, Hy)

bt41

=E | > (mep1 — Mes1) Q1 + Mgt <@t+1 + ¢A5t+1) | A¢, Hy | — my(Ar, Hy)

_bt+1 bt+1

=E Zﬁ’btﬂ (@tﬂ + b1 — Qt+1> | A¢, Hy

| bty

where the first equality follows by iterated expectations and the second by canceling
E {th-H mi41Qui1 | As, Ht} — mt(At, H;) =0. .

C.6 Theorem 4

Proof. We omit arguments throughout. We have

E (9" =) = E (@5 —mo)
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E (P (2) —mo)

gE (Hm) (mt—m:)(a—rt)+<ﬁ?k> %:m; (@+d-a)

k=1

where the first line follows by definition, the second by iid observations and the definition of mj, and
the third by Lemma 1. Note that by construction 7 is bounded and by assumption m; is bounded.
Therefore, for the second summand in the final display above, Hélder’s inequality, Lemmas 5 and
6, the triangle inequality, a Taylor expansion for 7y — r4, and Cauchy-Schwarz yield

T t—1 T
> E <H@) >y (Qe+ 60— Q) ¢ || S 17— mil®
t=1 k=1 bt t=1

Meanwhile, the first summand from the final line in the initial display above can be bounded
iteratively, which we consider next.

Arbitrary t:
Beginning with arbitrary ¢t € {1,...T}, we have

E{(ﬁ@) (mtmz)(art)} :E{(ﬁm) <mtm:+ﬁzzm:)(art)}

k=1 k=1

by adding and subtracting m;. Holder’s inequality, Taylor expansion, and Cauchy-Schwarz yields

E { C]jl ?k) (i =g ) (7 = o) }

Meanwhile, for the remaining term,

e (I () ()}

k=1

S llmg = mg|[llme = -

S 17— il [E (e — i | Av Hy) |

Because m; = E{ﬁt*H(Z ) | A¢, H;} by definition, Lemma 1 dictates that

g —my = }Tj E{(f[ﬁ) (ms—m:)(@—rs)}ﬂa (f[l?k> >t (Qs+ s - Q)
k=1 k=1 bs

s=t+1

Recursion argument:

Because the argument above can be applied to arbitrary ¢, it can be applied recursively from ¢t =T
backwards to t = 1. The additional doubly robust terms that arise from m; — m; will be at least
as small (asymptotically) as terms that have already appeared in the error. This yields

2| () (=m0

T
< >Ny — g |[I7e = m].
t=1

C.7 Corollary 2

Proof. This follows by the same argument as for Corollary 1. O
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