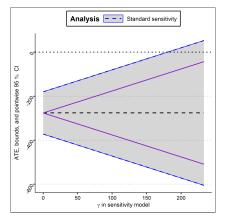
Calibrated sensitivity models

Alec McClean, Zach Branson, and Edward Kennedy

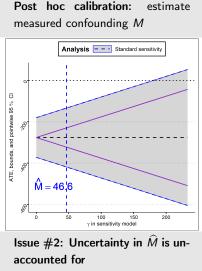
Department of Statistics & Data Science, Carnegie Mellon University https://arxiv.org/abs/2405.08738

Partial identification sensitivity model: $U \leq \gamma$

E.g., U is odds ratio of propensity score [Rosenbaum, 2002, Tan, 2006]



Issue #1: With nonparametric methods, difficult to interpret γ (e.g., how big is $\gamma = 190$?)



Solution: calibrated sensitivity models

Sensitivity model: $U \leq \gamma$

e.g., U is odds ratio of propensity score [Rosenbaum, 2002, Tan, 2006]

Calibrated sensitivity models: $U \leq \Gamma M$

 \rightarrow put measured confounding in the model!

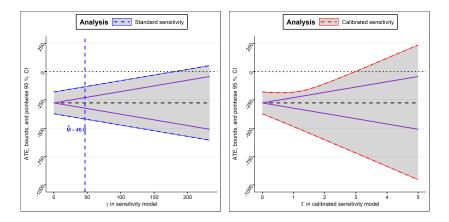
Issue #1: γ difficult to interpret

 Γ is interpretable bound on **unit-less** ratio U/M

Issue #2: uncertainty in \widehat{M} is unaccounted for One can develop methods to account for uncertainty in estimating measured confounding

Issue #3: choice of measured confounding not justified Clearer researchers must justify choice of measured confounding because explicit assumption in model

Accounting for uncertainty in \widehat{M} can change results!



 \rightarrow red wider than blue \implies less robust to unmeasured confounding \rightarrow red narrower than blue \implies more robust to unmeasured confounding Shape of red CI depends on covariance between estimators for bounds and measured confounding *M*

Setup

Observe
$$Z_i = \{X_i, A_i, Y_i\}$$
 for $i = 1, ..., n$ where $Z_i \stackrel{iid}{\sim} \mathcal{P}$

 $X \in \mathbb{R}^d$ are *d*-dimensional covariates $A \in \{0, 1\}$ is a binary treatment $Y \in \mathbb{R}$ is an outcome Y^a is the potential outcome under treatment *a W* are unmeasured confounders

Nuisance functions:

 $\pi(X) = \mathbb{P}(A = 1 \mid X) \text{ is the propensity score}$ $\mu_a(X) = \mathbb{E}(Y \mid A = a, X) \text{ is the outcome regression function}$

Causal assumptions:

- 1. Consistency: $Y = Y^a$ if A = a
- 2. Positivity: $\exists \varepsilon > 0 \text{ s.t. } \mathbb{P} \{ \varepsilon \leq \pi(X) \leq 1 \varepsilon \} = 1.$

Average Treatment Effect (ATE): $\psi_* = \mathbb{E} \left(Y^1 - Y^0 \right)$

Calibrated sensitivity models

Model choices

Calibrated sensitivity models: $U \leq \Gamma M$ where

- U is unmeasured confounding,
- Γ is the sensitivity parameter
- M is measured confounding (analogous to U)

$$\begin{array}{l} \textbf{Example: [Rosenbaum, 2002]} \\ \underbrace{\sup_{x,w,\widetilde{w}} \left| \log \left[\frac{\text{odds}\{\pi(x,w)\}}{\text{odds}\{\pi(x,\widetilde{w})\}} \right] \right|}_{U} \leq \\ \\ \underbrace{\Gamma \left(\max_{j \in \{1,...,d\}} \sup_{x_{-j},x_{j},\widetilde{x}_{j}} \left| \log \left[\frac{\text{odds}\{\pi(x_{-j},x_{j})\}}{\text{odds}\{\pi(x_{-j},\widetilde{x}_{j})\}} \right] \right| \right)}_{M} \\ x_{j} \text{ is } j^{th} \text{ covariate and } x_{-j} \text{ is } d-1 \text{ covariates with } j^{th} \text{ removed} \end{array}$$

6/11

Model choices: measured confounding

Measured confounding M:

- Which subsets measured confounding includes,
- Whether measured confounding is a max or an avg

$$\begin{aligned} \text{Maximum leave-one-out} &= \max_{j \in \{1, \dots, d\}} \sup_{x_{-j}, x_j, \widetilde{x}_j} \left| \log \left[\frac{\text{odds}\{\pi(x_{-j}, x_j)\}}{\text{odds}\{\pi(x_{-j}, \widetilde{x}_j)\}} \right] \right| \\ \text{Average leave-some-out} &= \frac{1}{|\mathcal{S}|} \sum_{S \in \mathcal{S}} \sup_{x_{-S}, x_{S}, \widetilde{x}_{S}} \left| \log \left[\frac{\text{odds}\{\pi(x_{-S}, x_{S})\}}{\text{odds}\{\pi(x_{-S}, \widetilde{x}_{S})\}} \right] \right| \end{aligned}$$

 \rightarrow exclude multiple covariates because suspect correlated and joint effect better proxy for unmeasured confounder

S is an index on $\{1, \ldots, d\}$, x_S are covariates corresponding to *S* (e.g., $x_{\{1,2\}}$ are first two covs), and x_{-S} are d - |S| covs with x_S removed.

Partial Identification

$$\psi_* \in [\mathcal{L}(\Gamma), \mathcal{U}(\Gamma)]$$

$$\mathcal{U}(\Gamma) = \mathbb{E}\Big[(1-A)\underbrace{\theta_1^+\{X;\exp(\Gamma M)\}}_{\text{depends on }M!} - A\theta_0^-\{X;\exp(\Gamma M)\}\Big]$$
$$\mathcal{L}(\Gamma) = \mathbb{E}\Big[(1-A)\theta_1^-\{X;\exp(\Gamma M)\} - A\theta_0^+\{X;\exp(\Gamma M)\}\Big]$$

where, e.g., $\theta_1^+(X; t)$ is the upper bound on $\mathbb{E}(Y^1 | A = 0, X)$ with parameter t [Yadlowsky et al., 2022]

Estimation and inference

Establishing convergence guarantees

1. Establish that the bounds $\mathcal{U}(\Gamma)$ and $\mathcal{L}(\Gamma)$ are differentiable with respect to M

 \rightarrow can use Taylor's theorem (/delta method) when providing error guarantees

 \rightarrow involved proof when nuisance functions **depend on** *M*, like θ {*X*; exp(ΓM)}

2. Establish estimator for *M* is regular and asymptotically linear (RAL) under doubly-robust-style conditions

- \rightarrow Use efficient influence functions
- \implies bias is product of nuisance function errors (e.g., $\|\widehat{\pi} \pi\|\|\widehat{\mu} \mu\|$)

3. Establish estimator for bound $\mathcal{U}(\Gamma)$ is RAL under doubly-robust-style conditions

 \rightarrow Use steps #1 and #2 and efficient influence functions

(Theorem, informal) Convergence guarantees for estimators for bounds, and inference for the ATE

Under doubly-robust-style conditions on the nuisance function estimators, (e.g., $\|\hat{\pi} - \pi\| \|\hat{\mu} - \mu\| = o_{\mathbb{P}}(n^{-1/2})$),

$$\widehat{\mathcal{U}}(\Gamma) - \mathcal{U}(\Gamma) = (\mathbb{P}_n - \mathbb{P})\varphi_{\mathcal{U}}(Z) + o_{\mathbb{P}}(n^{-1/2})$$
$$\widehat{\mathcal{L}}(\Gamma) - \mathcal{L}(\Gamma) = (\mathbb{P}_n - \mathbb{P})\varphi_{\mathcal{L}}(Z) + o_{\mathbb{P}}(n^{-1/2})$$

 $\rightarrow \varphi_{\mathcal{U}}$ and $\varphi_{\mathcal{L}}$ account for uncertainty in estimating M

Constructing confidence intervals for ATE:

 \rightarrow Intersection one-sided Wald-type intervals for ${\cal U}$ and ${\cal L}.$

Summary

- To solve issues with standard sensitivity analyses and post hoc calibration, we proposed novel calibrated sensitivity models: U ≤ ΓM,
- Discussed model choices within a calibrated framework, in particular for measured confounding,
- Partially identified the ATE,
- Developed methods for estimation and inference which account for uncertainty in \widehat{M}

https://arxiv.org/abs/2405.08738 mccleanalec@gmail.com alecmcclean.github.io

Thank you for your attention!

References

- Paul R. Rosenbaum. *Sensitivity to Hidden Bias*. Springer New York, New York, NY, 2002.
- Zhiqiang Tan. A distributional approach for causal inference using propensity scores. *Journal of the American Statistical Association*, 101(476):1619–1637, 2006.
- Steve Yadlowsky, Hongseok Namkoong, Sanjay Basu, John Duchi, and Lu Tian. Bounds on the conditional and average treatment effect with unobserved confounding factors. *The Annals of Statistics*, 50(5):2587–2615, 2022.