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Partial identification sensitivity model: U < v

E.g., U is odds ratio of propensity score [Rosenbaum, 2002, Tan, 2006]

ATE, bounds, and pointwise 95 % CI

| Analysis [= = | Standard sensitivity

Post hoc calibration: estimate
measured confounding M
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Issue #1: With nonparametric
methods, difficult to interpret ~
(e.g., how big is v = 1907?)

| Analysis [= =] Standard sensitivity

ATE, bounds, and pointwise 95 % CI
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Issue #2: Uncertainty in M is un-
accounted for
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Solution: calibrated sensitivity models

Sensitivity model: U <~
e.g., U is odds ratio of propensity score [Rosenbaum, 2002, Tan, 2006]

Calibrated sensitivity models:

— put measured confounding in the model!

Issue #1: ~ difficult to interpret
I is interpretable bound on unit-less ratio U/M

Issue #2: uncertainty in M is unaccounted for
One can develop methods to account for uncertainty in estimating
measured confounding

Issue #3: choice of measured confounding not justified
Clearer researchers must justify choice of measured confounding

because explicit assumption in model
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Accounting for uncertainty in M can change results!

| Analysis [= = -] Standard sensitivity | | Analysis [= = -] Calibrated sensitivity
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— red wider than blue = less robust to unmeasured confounding
— red narrower than blue = more robust to unmeasured confounding

Shape of red Cl depends on covariance between estimators for bounds and
measured confounding M
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Setup




Setup: data and assumptions

Observe Z; = {X;, A;, Yi} for i =1, ..., n where Z; i p

X € RY are d-dimensional covariates

A € {0,1} is a binary treatment

Y € R is an outcome

Y? is the potential outcome under treatment a
W are unmeasured confounders

Nuisance functions:
m(X) =P(A = 1] X) is the propensity score
wa(X) =E(Y | A= a, X) is the outcome regression function

Causal assumptions:
1. Consistency: Y =Y?ifA=a
2. Positivity: 3¢ >0s.t. P{e<n(X)<1l—-¢e}=1

Average Treatment Effect (ATE): ¢ = E (Y' — Y?)
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Calibrated sensitivity models




Model choices

Calibrated sensitivity models:

where

e U is unmeasured confounding,
e [ is the sensitivity parameter

e M is measured confounding (analogous to U)

Example: [Rosenbaum, 2002]
log [odds{w(x, W)}] ’ -

sup
X,W,W

odds{m(x, w)}

]

Sttt

N max  sup
Je{lw--ad} X,j,Xj,)?j

M

x; is jt covariate and x_; is d — 1 covariates with jt removed
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Model choices: measured confounding

Measured confounding M:

e Which subsets measured confounding includes,

e Whether measured confounding is a max or an avg

Maximum leave-one-out = max  sup |log [odds{w(x_j,:g)}] ’
JE{Lisd} x_j x5 odds{m(x_j, xj)}
Average leave-some-out = |5| Z sup |log [iji;g_i;z;ﬂ ‘

SeS X-5X5:Xs
— exclude multiple covariates because suspect correlated and

joint effect better proxy for unmeasured confounder

Sisanindex on {1,...,d}, xs are covariates corresponding to S (e.g., x{1,2}
are first two covs), and x_s are d — |S| covs with xs removed.
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Partial Identification




(Proposition, informal) Bounds on the ATE

e € [£(T), U(T)]

U(T) = E[(1 - A) 07 {X; exp(TM)} —AdG {X; exp(TM)} |

depends on M!

£(T) =E|(1 = A0 {X; exp(TM)} — AGE {X; exp(TM)} |

where, e.g., 0] (X; t) is the upper bound on E(Y! | A= 0, X)
with parameter t [Yadlowsky et al., 2022]
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Estimation and inference




Establishing convergence guarantees

1. Establish that the bounds #(I') and £(I') are differen-
tiable with respect to M

— can use Taylor's theorem (/delta method) when providing error guarantees

— involved proof when nuisance functions depend on M, like 0{X;exp(I'M)}

2. Establish estimator for M is regular and asymptotically
linear (RAL) under doubly-robust-style conditions

— Use efficient influence functions

= bias is product of nuisance function errors (e.g., ||7 — |||z — wl|)

3. Establish estimator for bound /(I') is RAL under doubly-
robust-style conditions

— Use steps #1 and #2 and efficient influence functions
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(Theorem, informal) Convergence guarantees for estimators

for bounds, and inference for the ATE

Under doubly-robust-style conditions on the nuisance function
estimators, (e.g., |7 — [ — | = os(n"1/2))

UT) —UT) = (P, — P)py(Z) + op(n~1/?)
L(T) — L(N) = (P — P)pr(Z) + op(n~Y/?)

— @y and @, account for uncertainty in estimating M

Constructing confidence intervals for ATE:
— Intersection one-sided Wald-type intervals for ¢/ and L.
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e To solve issues with standard sensitivity analyses and post
hoc calibration, we proposed novel calibrated sensitivity

models: ,

e Discussed model choices within a calibrated framework, in
particular for measured confounding,

e Partially identified the ATE,

e Developed methods for estimation and inference which
account for uncertainty in M

https://arxiv.org/abs/2405.08738
mccleanalec@gmail.com

alecmcclean.github.io

Thank you for your attention!



alecmcclean.github.io
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