
Calibrated sensitivity models

Alec McClean, Zach Branson, and Edward Kennedy

Department of Statistics & Data Science, Carnegie Mellon University
https://arxiv.org/abs/2405.08738

1 / 11

https://arxiv.org/abs/2405.08738


Partial identification sensitivity model: U ≤ γ

E.g., U is odds ratio of propensity score [Rosenbaum, 2002, Tan, 2006]

Issue #1: With nonparametric
methods, difficult to interpret γ
(e.g., how big is γ = 190?)

Post hoc calibration: estimate
measured confounding M

Issue #2: Uncertainty in M̂ is un-
accounted for
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Solution: calibrated sensitivity models

Sensitivity model: U ≤ γ

e.g., U is odds ratio of propensity score [Rosenbaum, 2002, Tan, 2006]

Calibrated sensitivity models: U ≤ ΓM

→ put measured confounding in the model!

Issue #1: γ difficult to interpret
Γ is interpretable bound on unit-less ratio U/M

Issue #2: uncertainty in M̂ is unaccounted for
One can develop methods to account for uncertainty in estimating
measured confounding

Issue #3: choice of measured confounding not justified
Clearer researchers must justify choice of measured confounding
because explicit assumption in model
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Accounting for uncertainty in M̂ can change results!

→ red wider than blue =⇒ less robust to unmeasured confounding
→ red narrower than blue =⇒ more robust to unmeasured confounding

Shape of red CI depends on covariance between estimators for bounds and
measured confounding M
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Setup



Setup: data and assumptions

Observe Zi = {Xi ,Ai ,Yi} for i = 1, ..., n where Zi
iid∼ P

X ∈ Rd are d-dimensional covariates
A ∈ {0, 1} is a binary treatment
Y ∈ R is an outcome
Y a is the potential outcome under treatment a

W are unmeasured confounders

Nuisance functions:
π(X ) = P(A = 1 | X ) is the propensity score
µa(X ) = E(Y | A = a,X ) is the outcome regression function

Causal assumptions:

1. Consistency: Y = Y a if A = a

2. Positivity: ∃ ε > 0 s.t. P {ε ≤ π(X ) ≤ 1 − ε} = 1.

Average Treatment Effect (ATE): ψ∗ = E
(
Y 1 − Y 0)
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Calibrated sensitivity models



Model choices

Calibrated sensitivity models: U ≤ ΓM

where
• U is unmeasured confounding,

• Γ is the sensitivity parameter

• M is measured confounding (analogous to U)

Example: [Rosenbaum, 2002]

sup
x ,w ,w̃

∣∣∣∣log [odds{π(x ,w)}
odds{π(x , w̃)}

]∣∣∣∣︸ ︷︷ ︸
U

≤

Γ

(
max

j∈{1,...,d}
sup

x−j ,xj ,x̃j

∣∣∣∣log [odds{π(x−j , xj)}
odds{π(x−j , x̃j)}

]∣∣∣∣
)

︸ ︷︷ ︸
M

xj is j th covariate and x−j is d − 1 covariates with j th removed
6 / 11



Model choices: measured confounding

Measured confounding M:
• Which subsets measured confounding includes,

• Whether measured confounding is a max or an avg

Maximum leave-one-out = max
j∈{1,...,d}

sup
x−j ,xj ,x̃j

∣∣∣∣log [odds{π(x−j , xj)}
odds{π(x−j , x̃j)}

]∣∣∣∣
Average leave-some-out =

1
|S|
∑
S∈S

sup
x−S ,xS ,x̃S

∣∣∣∣log [odds{π(x−S , xS)}
odds{π(x−S , x̃S)}

]∣∣∣∣
→ exclude multiple covariates because suspect correlated and
joint effect better proxy for unmeasured confounder

S is an index on {1, . . . , d}, xS are covariates corresponding to S (e.g., x{1,2}

are first two covs), and x−S are d − |S | covs with xS removed.
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Partial Identification



(Proposition, informal) Bounds on the ATE

ψ∗ ∈ [L(Γ),U(Γ)]

U(Γ) = E
[
(1 − A) θ+1 {X ; exp(ΓM)}︸ ︷︷ ︸

depends on M!

−Aθ−0 {X ; exp(ΓM)}
]

L(Γ) = E
[
(1 − A)θ−1 {X ; exp(ΓM)} − Aθ+0 {X ; exp(ΓM)}

]
where, e.g., θ+1 (X ; t) is the upper bound on E(Y 1 | A = 0,X )

with parameter t [Yadlowsky et al., 2022]
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Estimation and inference



Establishing convergence guarantees

1. Establish that the bounds U(Γ) and L(Γ) are differen-
tiable with respect to M

→ can use Taylor’s theorem (/delta method) when providing error guarantees

→ involved proof when nuisance functions depend on M, like θ{X ; exp(ΓM)}

2. Establish estimator for M is regular and asymptotically
linear (RAL) under doubly-robust-style conditions

→ Use efficient influence functions

=⇒ bias is product of nuisance function errors (e.g., ∥π̂ − π∥∥µ̂− µ∥)

3. Establish estimator for bound U(Γ) is RAL under doubly-
robust-style conditions

→ Use steps #1 and #2 and efficient influence functions
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(Theorem, informal) Convergence guarantees for estimators
for bounds, and inference for the ATE

Under doubly-robust-style conditions on the nuisance function
estimators, (e.g., ∥π̂ − π∥∥µ̂− µ∥ = oP(n

−1/2)),

Û(Γ)− U(Γ) = (Pn − P)φU (Z ) + oP(n
−1/2)

L̂(Γ)− L(Γ) = (Pn − P)φL(Z ) + oP(n
−1/2)

→ φU and φL account for uncertainty in estimating M

Constructing confidence intervals for ATE:
→ Intersection one-sided Wald-type intervals for U and L.
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Summary

• To solve issues with standard sensitivity analyses and post
hoc calibration, we proposed novel calibrated sensitivity
models: U ≤ ΓM ,

• Discussed model choices within a calibrated framework, in
particular for measured confounding,

• Partially identified the ATE,

• Developed methods for estimation and inference which
account for uncertainty in M̂

https://arxiv.org/abs/2405.08738
mccleanalec@gmail.com

alecmcclean.github.io

Thank you for your attention!
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