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Trimming with single timepoint data

iid

{(X:, Ai, Yi)}1_; ~ P with X; covariates, A; € {0, 1} binary
treatment and Y; € R outcome.
Y(a) is potential outcome under treatment a.

N\

X — f —Y

Positivity violations: 7(X) =P(A=1| X)~0or = 1.
E{Y(a)} not identified (m = 0) or hard-to-estimate (7 ~ 0)

Trimming: Change population to satisfy positivity
[{Y O)11{e < n(X) <1 - g}] for £ € [0,0.5)
(related to cond. trimming: E{f(Z) | £} = E{f(Z2)1(E)}/P(E)) 1/16
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Trimming on non-baseline covariates is challenging

Data: (leAla )(2,/427 Y)

Can we trim on propensity scores in the second timepoint?
(where we often have positivity violations!)
Traditional answer: no

xm

—===""

...the [post-treatment] covariates responsible for positivity vio-
lations may themselves be affected by past treatment. Trim-
ming... amounts to conditioning on post-treatment covariates

and can thus introduce new bias. [Petersen et al., 2012, Sec-
tion 4.3] (also, see, e.g., Jensen et al. [2024, Section 6.3]) 2 /16
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> Incremental propensity score interventions [Kennedy, 2019]

Proposition
Let 1(X) =1{e <7(X) <1—¢} and

A ifA=
D(a) _ 1 a

1(X)a+ {1-1(X)}A ifA+#a.
Then, if {Y (1), Y(0)} 1L A| X,

[E[Y{D(1)} - Y{D(0)}] = E[{¥(1) - Y(0)}1{e < n(X) < 1 —¢}]|

V.

D(a) is a flip intervention:
If A= a, do not intervene; o/w, flip to a if 1(X) = 1.
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Longitudinal data

(Z), P e P where Z = (X1, A1, Xo, Ao, ..., X1, AT, Y)

/\ - Y
Xl—>/4' \—SX” i /12 2. Y
7

X; € RY: time-varying covariates

A € {0,1}: time-varying binary treatment

Y € R: ultimate outcome of interest

History of O; at t: O; = (Oy, ..., O;)

Future of O; from t: O, = (O,...,O7)

H; = (X, A;_1): covariate and treatment history at t

NPSEM assumption: there are {fx+, fa:};_; and fy such that
Xt - fX,t(At—l, Ht—la UX,t)y
At = fa(He, Uay), and
Y = fv(Ar, Hr, Uy).

where {Ux ¢, Ua, Uy } are exogeneous variables 4/ 16
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We will avoid positivity by trimming/flipping
(eg. 30>0st. P{o<PA=1|H;)<1—-06}=1.)

Sequential randomization:
Q Standard: Us; Il (Ux .y, Uy) | Heforall t < T
Q Strong: Ua: L (Ux11,Up i1, Uy) | He

Standard SR: common causes of A, and future covariates and
outcome measured. Typical in literature.

Strong SR: common causes A; and future covariates and
outcome and treatments measured. Allows for ID when
intervention depends on natural value of treatment.
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Intervention D; and potential outcomes Dt

o D)
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D; can be a function of A;(D,_1), H:(D:_1).

R
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Intervention D; and potential outcomes Dt

H,(D,) >T)

D; can be a function of A;(D,_1), H:(D:_1).

Ultimately, replace A7 with D
» Y(D7) = fv(D7, Hr(D7-1), Uy)

“Counterfactual outcomes under D"

7/16



Longitudinal trimming with flip
Interventions



Longitudinal flip interventions

> ar € {0,1}7 is the target regime

8/ 16



Longitudinal flip interventions

> ar € {0,1}7 is the target regime

> If = If(ag; he) = 1[P{A¢(D¢—1) = a¢ | He(D¢—1) = h} > ¢l is
trimming indicator

8/ 16



Longitudinal flip interventions

> ar € {0,1}7 is the target regime

> If = If(ag; he) = 1[P{A¢(D¢—1) = a¢ | He(D¢—1) = h} > ¢l is
trimming indicator

Flip intervention at time t targeting a; is

Ifa; + (1 — I$)A¢(De-1), otherwise,

Dt(at) _ {At(Dt1)7 if At(Dt—l) = at,

8/ 16



Longitudinal flip interventions

> ar € {0,1}7 is the target regime

> If = If(ag; he) = 1[P{A¢(D¢—1) = a¢ | He(D¢—1) = h} > ¢l is
trimming indicator

Flip intervention at time t targeting a; is

Ifa; + (1 — I$)A¢(De-1), otherwise,

Dt(at) _ {At(Dt1)7 if At(Dt—l) = at,

At t, if the natural value of treatment is already a;, do
nothing; otherwise, “flip” the subject to a; if their natural
history lies in the trimmed set (determined by /¢).

8/ 16
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Then,

extended g-formula

E{Y(Dr)} = > E{E(Y|AT:bT7 XTII[ Q: (bt | be-1, )},

ETE{O l}T
}le,

YHQt At|Ht
Q:(ar | he) = Ie(ar; h {1 — I(ag; h )}]P’ (A = a; | hy)

P(A¢ | He)
and Qt(l - at | ht) — 1 - Qt(at | ht)

where
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We are trimming, but we can’t(/shouldn’t) aim for

“trimmed” effects

Not necessarily true that E{Y (D) — Y(BIT)} isolates
Y = E[{ Y(ar) — Y(37)}1(could take both a7 and E’T)]

Why? because D affects X;,1(D;), Ary1(D:)
However, 1 is a bad target!

The(?rem: Other flip interventions Dt and 5/7- yield E{Y(ET) —
Y(D+)} = ©. However, they have two properties:
@ They depend on cross-world propensity scores: trim supposing

non-zero propensity score under D; =1 and D; =0
non-falsifiable

@ They depend on future propensity scores: trim at t = 1
supposing non-zero propensity scores at t = 2

(this justifies the caution typically advised) 10/ 16
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Smooth trimming

Everything we've done so far can be generalized to smooth
trimming!
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Smooth trimming

Everything we've done so far can be generalized to smooth
trimming!

Why: flip effects inherit T convergence rate
ML estimator = slower-than-/n convergence
Smooth trimmed effects: \/n-convergence w/ ML estimators

How: replace 1(-) by S(-): ]E[{Y(l) — Y(0)}S(X)
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Smooth-flip (S-flip) interventions

> ar € {0,1}7 is the target regime

| 4 Stc = Sf(at, ht) = S[P{At(btf]_) = a | Ht(btf]_) = ht}7 k7E:| is
smooth trimming indicator

S-flip intervention at time t targeting a; is

D (a ) _ At(Bt—l)y if At(Bt—l) = at,
ae (Ve > Sf)ar + 1(V; < SE)A:(D;—1), otherwise,

and V4, ..., Vr % Uniform(0,1) and V; 1L Z for all t < T.

At time t, if the natural value of treatment is already a;, do nothing;
otherwise, “flip” the subject to a; with probability S;.

s(x) = 1 — exp(—50x) approximates 1(x > 0) :
s(0) = 0,5(0.01) = 0.39, 5(0.1) = 0.99
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Theorem: S-flip effect identification
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Let Si(a; hy) = s{P(A: = a; | ht), e, k}. Suppose
» Dt = {Dy(a1), Ds(a2),...,Dr(ar)} are S-flip interventions,
> 5(0) =0, and
» the NPSEM and strong SR hold.

Then,

E{Y(Dr)}= > E{E(HAT:bT, II[ Q:(be | be—1, )},

ETG{O l}T

QtAtlHt
Y
H]P’At\Ht

where

Qt(at | ht) = St(at; ht) + {1 - St(at; ht)}P(At = at | ht)

(Se(ae; hy) =1 = Q(ar | he) = 1)

13 / 16



Estimation

(in two slides)



Estimation of S-flip effects

S-flip effects are pathwise differentiable = efficient
influence function (EIF)-based estimators

14 / 16



Estimation of S-flip effects

S-flip effects are pathwise differentiable = efficient
influence function (EIF)-based estimators

We derive the new EIF (plug-in plus weighted residuals)

14 / 16



Estimation of S-flip effects

S-flip effects are pathwise differentiable = efficient
influence function (EIF)-based estimators

We derive the new EIF (plug-in plus weighted residuals)

Inspires two one-step estimators:

14 / 16



Estimation of S-flip effects

S-flip effects are pathwise differentiable = efficient
influence function (EIF)-based estimators

We derive the new EIF (plug-in plus weighted residuals)

Inspires two one-step estimators:
Q Multiply robust-style

14 / 16



Estimation of S-flip effects

S-flip effects are pathwise differentiable = efficient
influence function (EIF)-based estimators

We derive the new EIF (plug-in plus weighted residuals)

Inspires two one-step estimators:
Q Multiply robust-style

@ Sequentially doubly robust-style (debias pseudo-outcome
in multiply robust-style estimator)

14 / 16



Estimation of S-flip effects

S-flip effects are pathwise differentiable = efficient
influence function (EIF)-based estimators

We derive the new EIF (plug-in plus weighted residuals)

Inspires two one-step estimators:
Q Multiply robust-style

@ Sequentially doubly robust-style (debias pseudo-outcome
in multiply robust-style estimator)

We derive bias bounds, which imply weak convergence for
S-flip estimator under nonparametric conditions on nuisance
functions

14 / 16
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— Hence, 2(T + 1) multiply robust-style bound
@ Tighten bias bound from IPSl-style result [Kennedy, 2019)]

Sequentially DR-style result is first-of-its-kind where Q;
depends on unknown propensity score

Theorem, informal: Let i) denote S-flip effect, 7, prop. score at t,
m; denote seq. reg. at t with estimated pseudo-outcome. Then,

-
[ (Far =) S D217 = mell (178 = el + 17 — mll)-
t=1

ML conv. rates

|7 — me|| = op(n~Y/*) = ||y — M| = \/n—consistency & asymp-
totic normality 15/ 16



Thank youl!

Recap:

> T=1
trimming = flip interventions
smooth trimming = S-flip ints

hadera01@nyu.edu
Prelim draft:

> T > 1: not so simple.
Flip/S-flip ints avoid positivity
asmp and cross-world /
future-dependence

> Efficient estimation of S-flip
effects: (1) multiply robust and
(2) sequentially doubly robust

Ongoing work:
alecmcclean.github.io/

> Data analysis (administrative files/LSTTEs-short.pdf

censoring and censoring by
death)
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alecmcclean.github.io/files/LSTTEs-short.pdf
alecmcclean.github.io/files/LSTTEs-short.pdf
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Additional remarks

@ Robustness to positivity violations = S-flips are
alternative to IPSlIs that target a specific regime

©Q Relax dependence on natural value of treatment:
Di(a) = 1| Ve < 1(ar = 1)I+(1-F)P{A(De 1) = 1| He(De 1)}

> Can avoid practical issues — we may not observe
natural value of treatment

> |dentification only requires standard sequential
randomization

© Flip interventions inspired by maximally coupled
policies Levis et al. [2024]
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