Longitudinal trimmed and smooth trimmed effects with flip and S-flip interventions

Alec McClean and Iván Díaz

New York University Grossman School of Medicine

 $\{(X_i, A_i, Y_i)\}_{i=1}^n \stackrel{iid}{\sim} \mathcal{P} \text{ with } X_i \text{ covariates, } A_i \in \{0, 1\} \text{ binary treatment and } Y_i \in \mathbb{R} \text{ outcome.}$

Y(*a*) is potential outcome under treatment *a*.

 $\{(X_i, A_i, Y_i)\}_{i=1}^n \stackrel{iid}{\sim} \mathcal{P} \text{ with } X_i \text{ covariates, } A_i \in \{0, 1\} \text{ binary treatment and } Y_i \in \mathbb{R} \text{ outcome.}$ Y(a) is potential outcome under treatment a.

 $\{(X_i, A_i, Y_i)\}_{i=1}^n \stackrel{iid}{\sim} \mathcal{P} \text{ with } X_i \text{ covariates, } A_i \in \{0, 1\} \text{ binary treatment and } Y_i \in \mathbb{R} \text{ outcome.}$ Y(a) is potential outcome under treatment a.

 $\{(X_i, A_i, Y_i)\}_{i=1}^n \stackrel{iid}{\sim} \mathcal{P} \text{ with } X_i \text{ covariates, } A_i \in \{0, 1\} \text{ binary treatment and } Y_i \in \mathbb{R} \text{ outcome.}$ Y(a) is potential outcome under treatment a.

 $\{(X_i, A_i, Y_i)\}_{i=1}^n \stackrel{iid}{\sim} \mathcal{P} \text{ with } X_i \text{ covariates, } A_i \in \{0, 1\} \text{ binary treatment and } Y_i \in \mathbb{R} \text{ outcome.}$ Y(a) is potential outcome under treatment a.

 $\{(X_i, A_i, Y_i)\}_{i=1}^n \stackrel{iid}{\sim} \mathcal{P} \text{ with } X_i \text{ covariates, } A_i \in \{0, 1\} \text{ binary treatment and } Y_i \in \mathbb{R} \text{ outcome.}$ Y(a) is potential outcome under treatment a.

Data: (X_1, A_1, X_2, A_2, Y) .

Can we trim on propensity scores in the second timepoint? (where we often have positivity violations!) Traditional answer: no

Data: (X_1, A_1, X_2, A_2, Y) .

Can we trim on propensity scores in the second timepoint? (where we often have positivity violations!) Traditional answer: no

Data: (X_1, A_1, X_2, A_2, Y) .

Can we trim on propensity scores in the second timepoint? (where we often have positivity violations!)

Traditional answer: no

Data: (X_1, A_1, X_2, A_2, Y) .

Can we trim on propensity scores in the second timepoint? (where we often have positivity violations!) Traditional answer: no

Data: (X_1, A_1, X_2, A_2, Y) .

Can we trim on propensity scores in the second timepoint? (where we often have positivity violations!) Traditional answer: no

Dynamic stochastic interventions: D = d(A, X) adapts so $\mathbb{E}{Y(D)}$ IDable and estimations

- Modified treatment policies [Díaz et al., 2023]
- Incremental propensity score interventions [Kennedy, 2019]

Proposition

Let
$$\mathbb{1}(X) \equiv \mathbb{1}\{\varepsilon < \pi(X) < 1 - \varepsilon\}$$
 and

$$D(a) = \begin{cases} A & \text{if } A = a \\ \mathbb{1}(X)a + \{1 - \mathbb{1}(X)\}A & \text{if } A \neq a. \end{cases}$$
Then, if $\{Y(1), Y(0)\} \perp A \mid X$,

$$\mathbb{E}\left[Y\{D(1)\} - Y\{D(0)\}\right] = \mathbb{E}\left[\{Y(1) - Y(0)\}\mathbb{1}\{\varepsilon < \pi(X) < 1 - \varepsilon\}\right]$$

Dynamic stochastic interventions:

D = d(A, X) adapts so $\mathbb{E}{Y(D)}$ IDable and estimable

- Modified treatment policies [Díaz et al., 2023]
- Incremental propensity score interventions [Kennedy, 2019]

Proposition

Let
$$\mathbb{1}(X) \equiv \mathbb{1}\{\varepsilon < \pi(X) < 1 - \varepsilon\}$$
 and

$$D(a) = \begin{cases} A & \text{if } A = a \\ \mathbb{1}(X)a + \{1 - \mathbb{1}(X)\}A & \text{if } A \neq a. \end{cases}$$
Then, if $\{Y(1), Y(0)\} \perp A \mid X$,

$$\mathbb{E}\left[Y\{D(1)\} - Y\{D(0)\}\right] = \mathbb{E}\left[\{Y(1) - Y(0)\}\mathbb{1}\{\varepsilon < \pi(X) < 1 - \varepsilon\}\right]$$

Dynamic stochastic interventions:

D = d(A, X) adapts so $\mathbb{E}{Y(D)}$ IDable and estimable

- Modified treatment policies [Díaz et al., 2023]
- Incremental propensity score interventions [Kennedy, 2019]

Proposition

Let
$$\mathbb{1}(X) \equiv \mathbb{1}\{\varepsilon < \pi(X) < 1 - \varepsilon\}$$
 and

$$D(a) = \begin{cases} A & \text{if } A = a \\ \mathbb{1}(X)a + \{1 - \mathbb{1}(X)\}A & \text{if } A \neq a. \end{cases}$$
Then, if $\{Y(1), Y(0)\} \perp A \mid X$,

 $\mathbb{E}\left[Y\{D(1)\} - Y\{D(0)\}\right] = \mathbb{E}\left[\{Y(1) - Y(0)\}\mathbb{1}\{\varepsilon < \pi(X) < 1 - \varepsilon\}\right]$

Dynamic stochastic interventions:

D = d(A, X) adapts so $\mathbb{E}{Y(D)}$ IDable and estimable

- Modified treatment policies [Díaz et al., 2023]
- Incremental propensity score interventions [Kennedy, 2019]

Proposition

Let
$$\mathbb{1}(X) \equiv \mathbb{1}\{\varepsilon < \pi(X) < 1 - \varepsilon\}$$
 and

$$D(a) = \begin{cases} A & \text{if } A = a \\ \mathbb{1}(X)a + \{1 - \mathbb{1}(X)\}A & \text{if } A \neq a. \end{cases}$$
Then, if $\{Y(1), Y(0)\} \perp A \mid X$,

 $\mathbb{E}\left[Y\{D(1)\} - Y\{D(0)\}\right] = \mathbb{E}\left[\{Y(1) - Y(0)\}\mathbb{1}\{\varepsilon < \pi(X) < 1 - \varepsilon\}\right]$

Longitudinal setup

$$\{Z_i\}_{i=1}^n \stackrel{iid}{\sim} \mathbb{P} \in \mathcal{P} \text{ where } Z = (X_1, A_1, X_2, A_2, \dots, X_T, A_T, Y)$$

 $X_t \in \mathbb{R}^d$: time-varying covariates $A_t \in \{0, 1\}$: time-varying binary treatment $Y \in \mathbb{R}$: ultimate outcome of interest

History of O_t at $t: \overline{O}_t = (O_1, \dots, O_t)$ Future of O_t from $t: \underline{O}_t = (O_t, \dots, O_T)$ $H_t = (\overline{X}_t, \overline{A}_{t-1})$: covariate and treatment history at t

NPSEM assumption: there are $\{f_{X,t}, f_{A,t}\}_{t=1}^{T}$ and f_Y such that $X_t = f_{X,t}(A_{t-1}, H_{t-1}, U_{X,t}),$ $A_t = f_{A,t}(H_t, U_{A,t}),$ and $Y = f_Y(A_T, H_T, U_Y).$ where $\{U_{X,t}, U_{A,t}, U_Y\}$ are exogeneous variables

$$\{Z_i\}_{i=1}^n \stackrel{iid}{\sim} \mathbb{P} \in \mathcal{P} \text{ where } Z = (X_1, A_1, X_2, A_2, \dots, X_T, A_T, Y)$$

 $X_t \in \mathbb{R}^d$: time-varying covariates $A_t \in \{0, 1\}$: time-varying binary treatment $Y \in \mathbb{R}$: ultimate outcome of interest

History of O_t at $t: \overline{O}_t = (O_1, \dots, O_t)$ Future of O_t from $t: \underline{O}_t = (O_t, \dots, O_T)$ $H_t = (\overline{X}_t, \overline{A}_{t-1})$: covariate and treatment history at t

NPSEM assumption: there are $\{f_{X,t}, f_{A,t}\}_{t=1}^{T}$ and f_Y such that $X_t = f_{X,t}(A_{t-1}, H_{t-1}, U_{X,t}),$ $A_t = f_{A,t}(H_t, U_{A,t}),$ and $Y = f_Y(A_T, H_T, U_Y).$ where $\{U_{X,t}, U_{A,t}, U_Y\}$ are exogeneous variables

4 / 16

$$\{Z_i\}_{i=1}^n \stackrel{iid}{\sim} \mathbb{P} \in \mathcal{P} \text{ where } Z = (X_1, A_1, X_2, A_2, \dots, X_T, A_T, Y)$$

 $X_t \in \mathbb{R}^d$: time-varying covariates $A_t \in \{0, 1\}$: time-varying binary treatment $Y \in \mathbb{R}$: ultimate outcome of interest

History of O_t at $t: \overline{O}_t = (O_1, \dots, O_t)$ Future of O_t from $t: \underline{O}_t = (O_t, \dots, O_T)$ $H_t = (\overline{X}_t, \overline{A}_{t-1})$: covariate and treatment history at t

NPSEM assumption: there are
$$\{f_{X,t}, f_{A,t}\}_{t=1}^{T}$$
 and f_Y such that
 $X_t = f_{X,t}(A_{t-1}, H_{t-1}, U_{X,t}),$
 $A_t = f_{A,t}(H_t, U_{A,t}),$ and
 $Y = f_Y(A_T, H_T, U_Y).$
where $\{U_{X,t}, U_{A,t}, U_Y\}$ are exogeneous variables

4 / 16

$$\{Z_i\}_{i=1}^n \stackrel{iid}{\sim} \mathbb{P} \in \mathcal{P} \text{ where } Z = (X_1, A_1, X_2, A_2, \dots, X_T, A_T, Y)$$

 $X_t \in \mathbb{R}^d$: time-varying covariates $A_t \in \{0, 1\}$: time-varying binary treatment $Y \in \mathbb{R}$: ultimate outcome of interest

History of O_t at $t: \overline{O}_t = (O_1, \dots, O_t)$ Future of O_t from $t: \underline{O}_t = (O_t, \dots, O_T)$ $H_t = (\overline{X}_t, \overline{A}_{t-1})$: covariate and treatment history at t

NPSEM assumption: there are $\{f_{X,t}, f_{A,t}\}_{t=1}^{T}$ and f_Y such that $X_t = f_{X,t}(A_{t-1}, H_{t-1}, U_{X,t}),$ $A_t = f_{A,t}(H_t, U_{A,t}),$ and $Y = f_Y(A_T, H_T, U_Y).$ where $\{U_{X,t}, U_{A,t}, U_Y\}$ are exogeneous variables

We will avoid **positivity** by trimming/flipping (e.g. $\exists \delta > 0$ s.t. $\mathbb{P}\{\delta < \mathbb{P}(A_t = 1 \mid H_t) < 1 - \delta\} = 1.)$

Sequential randomization:

• Standard: $U_{A,t} \perp \perp (\underline{U}_{X,t+1}, U_Y) \mid H_t$ for all $t \leq T$ • Strong: $U_{A,t} \perp \perp (\underline{U}_{X,t+1}, \underline{U}_{A,t+1}, U_Y) \mid H_t$

Standard SR: common causes of A_t and future covariates and outcome measured. Typical in literature.

We will avoid **positivity** by trimming/flipping (e.g. $\exists \delta > 0$ s.t. $\mathbb{P}\{\delta < \mathbb{P}(A_t = 1 \mid H_t) < 1 - \delta\} = 1.)$

Sequential randomization:

• Standard:
$$U_{A,t} \perp \perp (\underline{U}_{X,t+1}, U_Y) \mid H_t$$
 for all $t \leq T$
• Strong: $U_{A,t} \perp \perp (\underline{U}_{X,t+1}, \underline{U}_{A,t+1}, U_Y) \mid H_t$

Standard SR: common causes of A_t and future covariates and outcome measured. Typical in literature.

We will avoid **positivity** by trimming/flipping (e.g. $\exists \delta > 0$ s.t. $\mathbb{P}\{\delta < \mathbb{P}(A_t = 1 | H_t) < 1 - \delta\} = 1.$)

Sequential randomization:

• Standard: $U_{A,t} \perp \perp (\underline{U}_{X,t+1}, U_Y) \mid H_t$ for all $t \leq T$ • Strong: $U_{A,t} \perp \perp (\underline{U}_{X,t+1}, \underline{U}_{A,t+1}, U_Y) \mid H_t$

Standard SR: common causes of A_t and future covariates and outcome measured. Typical in literature.

We will avoid **positivity** by trimming/flipping (e.g. $\exists \delta > 0$ s.t. $\mathbb{P}\{\delta < \mathbb{P}(A_t = 1 \mid H_t) < 1 - \delta\} = 1.$)

Sequential randomization:

- Standard: $U_{A,t} \perp (\underline{U}_{X,t+1}, U_Y) \mid H_t$ for all $t \leq T$
- **3** Strong: $U_{A,t} \perp (\underline{U}_{X,t+1}, \underline{U}_{A,t+1}, U_Y) \mid H_t$

Standard SR: common causes of A_t and future covariates and outcome measured. Typical in literature.

We will avoid **positivity** by trimming/flipping (e.g. $\exists \delta > 0$ s.t. $\mathbb{P}\{\delta < \mathbb{P}(A_t = 1 \mid H_t) < 1 - \delta\} = 1.$)

Sequential randomization:

- Standard: $U_{A,t} \perp (\underline{U}_{X,t+1}, U_Y) \mid H_t$ for all $t \leq T$
- Strong: $U_{A,t} \perp \perp (\underline{U}_{X,t+1}, \underline{U}_{A,t+1}, U_Y) \mid H_t$

Standard SR: common causes of A_t and future covariates and outcome measured. Typical in literature.

We will avoid **positivity** by trimming/flipping (e.g. $\exists \delta > 0$ s.t. $\mathbb{P}\{\delta < \mathbb{P}(A_t = 1 \mid H_t) < 1 - \delta\} = 1.$)

Sequential randomization:

- Strong: $U_{A,t} \perp \perp (\underline{U}_{X,t+1}, \underline{U}_{A,t+1}, U_Y) \mid H_t$

Standard SR: common causes of A_t and future covariates and outcome measured. Typical in literature.

Counterfactual variables under \overline{D}_{t-1}

\overline{D}_{t-1} generates counterfactual variables at time t:

- ► $X_t(\overline{D}_{t-1}) = f_{X,t}(D_{t-1}, H_{t-1}(\overline{D}_{t-2}), U_{X,t})$ "Natural covariate value"
- ► H_t(D
 _{t-1}) = (D
 _{t-1}, X
 _t(D
 _{t-1})) "Natural covariate and treatment history"
- $A_t(\overline{D}_{t-1}) = f_{A,t}(H_t(\overline{D}_{t-1}), U_{A,t})$ "Natural value of treatment"

Counterfactual variables under \overline{D}_{t-1}

 \overline{D}_{t-1} generates counterfactual variables at time t:

- ► $X_t(\overline{D}_{t-1}) = f_{X,t}(D_{t-1}, H_{t-1}(\overline{D}_{t-2}), U_{X,t})$ "Natural covariate value"
- ► H_t(D
 _{t-1}) = (D
 _{t-1}, X
 _t(D
 _{t-1})) "Natural covariate and treatment history"
- $A_t(\overline{D}_{t-1}) = f_{A,t}(H_t(\overline{D}_{t-1}), U_{A,t})$ "Natural value of treatment"

Counterfactual variables under \overline{D}_{t-1}

 \overline{D}_{t-1} generates counterfactual variables at time t:

- ► $X_t(\overline{D}_{t-1}) = f_{X,t}(D_{t-1}, H_{t-1}(\overline{D}_{t-2}), U_{X,t})$ "Natural covariate value"
- ► H_t(D
 _{t-1}) = (D
 _{t-1}, X
 _t(D
 _{t-1})) "Natural covariate and treatment history"
- $A_t(\overline{D}_{t-1}) = f_{A,t}(H_t(\overline{D}_{t-1}), U_{A,t})$ "Natural value of treatment"

Intervention D_t and potential outcomes \overline{D}_T

 D_t can be a function of $A_t(\overline{D}_{t-1}), H_t(\overline{D}_{t-1})$.

Ultimately, replace \overline{A}_T with \overline{D}_T : $\blacktriangleright Y(\overline{D}_T) = f_Y(D_T, H_T(\overline{D}_{T-1}), U_Y)$ "Counterfactual outcomes under \overline{D}_T "

Intervention D_t and potential outcomes \overline{D}_T

 D_t can be a function of $A_t(\overline{D}_{t-1}), H_t(\overline{D}_{t-1})$.

Ultimately, replace \overline{A}_T with \overline{D}_T :

•
$$Y(\overline{D}_T) = f_Y(D_T, H_T(\overline{D}_{T-1}), U_Y)$$

"Counterfactual outcomes under \overline{D}_T "

Longitudinal trimming with flip interventions

Longitudinal flip interventions

• $\overline{a}_T \in \{0,1\}^T$ is the target regime

► $I_t^c \equiv I_t^c(a_t; h_t) = \mathbb{1}\left[\mathbb{P}\{A_t(\overline{D}_{t-1}) = a_t \mid H_t(\overline{D}_{t-1}) = h_t\} > \varepsilon\right]$ is trimming indicator

Flip intervention at time t targeting a_t is

$$D_t(a_t) = \begin{cases} A_t(\overline{D}_{t-1}), & \text{if } A_t(\overline{D}_{t-1}) = a_t, \\ I_t^c a_t + (1 - I_t^c) A_t(\overline{D}_{t-1}), & \text{otherwise,} \end{cases}$$

At t, if the natural value of treatment is **already** a_t , **do nothing**; otherwise, "flip" the subject to a_t if their **natural history lies in the trimmed set** (determined by l_t^c).

Longitudinal flip interventions

- $\overline{a}_T \in \{0,1\}^T$ is the target regime
- ► $I_t^c \equiv I_t^c(a_t; h_t) = \mathbb{1}\left[\mathbb{P}\{A_t(\overline{D}_{t-1}) = a_t \mid H_t(\overline{D}_{t-1}) = h_t\} > \varepsilon\right]$ is trimming indicator

Flip intervention at time t targeting a_t is

$$D_t(a_t) = \begin{cases} A_t(\overline{D}_{t-1}), & \text{if } A_t(\overline{D}_{t-1}) = a_t, \\ I_t^c a_t + (1 - I_t^c) A_t(\overline{D}_{t-1}), & \text{otherwise,} \end{cases}$$

At t, if the natural value of treatment is **already** a_t , **do nothing**; otherwise, "flip" the subject to a_t if their **natural history lies in the trimmed set** (determined by l_t^c).

Longitudinal flip interventions

• $\overline{a}_T \in \{0,1\}^T$ is the target regime

► $I_t^c \equiv I_t^c(a_t; h_t) = \mathbb{1}\left[\mathbb{P}\left\{A_t(\overline{D}_{t-1}) = a_t \mid H_t(\overline{D}_{t-1}) = h_t\right\} > \varepsilon\right]$ is trimming indicator

Flip intervention at time *t* targeting a_t is

$$D_t(a_t) = \begin{cases} A_t(\overline{D}_{t-1}), & \text{if } A_t(\overline{D}_{t-1}) = a_t, \\ I_t^c a_t + (1 - I_t^c) A_t(\overline{D}_{t-1}), & \text{otherwise,} \end{cases}$$

At t, if the natural value of treatment is **already** a_t , **do nothing**; otherwise, "flip" the subject to a_t if their **natural history lies in the trimmed set** (determined by l_t^c).
Longitudinal flip interventions

• $\overline{a}_T \in \{0,1\}^T$ is the target regime

► $I_t^c \equiv I_t^c(a_t; h_t) = \mathbb{1}\left[\mathbb{P}\left\{A_t(\overline{D}_{t-1}) = a_t \mid H_t(\overline{D}_{t-1}) = h_t\right\} > \varepsilon\right]$ is trimming indicator

Flip intervention at time *t* targeting a_t is

$$D_t(a_t) = \begin{cases} A_t(\overline{D}_{t-1}), & \text{if } A_t(\overline{D}_{t-1}) = a_t, \\ I_t^c a_t + (1 - I_t^c) A_t(\overline{D}_{t-1}), & \text{otherwise,} \end{cases}$$

At t, if the natural value of treatment is **already** a_t , **do nothing**; otherwise, "flip" the subject to a_t if their **natural history lies in the trimmed set** (determined by I_t^c).

Let $I_t(a_t; h_t) = \mathbb{1}\{\mathbb{P}(A_t = a_t \mid h_t) > \varepsilon\}$. Suppose

• $\overline{D}_T = \{D_1(a_1), D_2(a_2), \dots, D_T(a_T)\}$ are flip interventions and

the NPSEM and strong SR hold.

Then,

$$\{Y(\overline{D}_{\mathcal{T}})\} = \underbrace{\sum_{\overline{b}_{\mathcal{T}} \in \{0,1\}^{\mathcal{T}}} \mathbb{E}\left\{\mathbb{E}\left(Y \mid \overline{A}_{\mathcal{T}} = \overline{b}_{\mathcal{T}}, \ \overline{X}_{\mathcal{T}}\right) \prod_{t=1}^{T} Q_t(b_t \mid \overline{b}_{t-1}, \overline{X}_t)\right\}}_{\mathbb{E}\left[Y \prod_{t=1}^{T} \frac{Q_t(A_t \mid H_t)}{\mathbb{P}(A_t \mid H_t)}\right]\right\}}_{\mathsf{IPW}},$$

where

$$Q_t(a_t \mid h_t) = I_t(a_t; h_t) + \{1 - I_t(a_t; h_t)\}\mathbb{P}(A_t = a_t \mid h_t)$$

and $Q_t(1 - a_t \mid h_t) = 1 - Q_t(a_t \mid h_t).$

9 / 16

Let $I_t(a_t; h_t) = \mathbb{1}\{\mathbb{P}(A_t = a_t \mid h_t) > \varepsilon\}$. Suppose

- $\overline{D}_T = \{D_1(a_1), D_2(a_2), \dots, D_T(a_T)\}$ are flip interventions and
- the NPSEM and strong SR hold.

Then,

$$\mathbb{E}\left\{Y(\overline{D}_{T})\right\} = \underbrace{\sum_{\overline{b}_{T} \in \{0,1\}^{T}} \mathbb{E}\left\{\mathbb{E}\left(Y \mid \overline{A}_{T} = \overline{b}_{T}, \overline{X}_{T}\right) \prod_{t=1}^{T} Q_{t}\left(b_{t} \mid \overline{b}_{t-1}, \overline{X}_{t}\right)\right\}}_{\mathbb{E}\left[Y \prod_{t=1}^{T} \frac{Q_{t}(A_{t} \mid H_{t})}{\mathbb{P}(A_{t} \mid H_{t})}\right]\right\}}_{\mathsf{IPW}},$$

where

$$Q_t(a_t \mid h_t) = I_t(a_t; h_t) + \{1 - I_t(a_t; h_t)\}\mathbb{P}(A_t = a_t \mid h_t)$$

nd $Q_t(1 - a_t \mid h_t) = 1 - Q_t(a_t \mid h_t).$

Let
$$I_t(a_t; h_t) = \mathbb{1}\{\mathbb{P}(A_t = a_t \mid h_t) > \varepsilon\}$$
. Suppose

- $\overline{D}_T = \{D_1(a_1), D_2(a_2), \dots, D_T(a_T)\}$ are flip interventions and
- the NPSEM and strong SR hold.

Then,

$$\mathbb{E}\left\{Y(\overline{D}_{T})\right\} = \underbrace{\sum_{\overline{b}_{T} \in \{0,1\}^{T}} \mathbb{E}\left\{\mathbb{E}\left(Y \mid \overline{A}_{T} = \overline{b}_{T}, \ \overline{X}_{T}\right) \prod_{t=1}^{T} Q_{t}\left(b_{t} \mid \overline{b}_{t-1}, \overline{X}_{t}\right)\right\}}_{\mathbb{E}\left\{Y \prod_{t=1}^{T} \frac{Q_{t}(A_{t} \mid H_{t})}{\mathbb{P}(A_{t} \mid H_{t})}\right\}} \text{IPW},$$

where

$$Q_t(a_t \mid h_t) = I_t(a_t; h_t) + \{1 - I_t(a_t; h_t)\}\mathbb{P}(A_t = a_t \mid h_t)$$

and $Q_t(1 - a_t \mid h_t) = 1 - Q_t(a_t \mid h_t).$

Let
$$I_t(a_t; h_t) = \mathbb{1}\{\mathbb{P}(A_t = a_t \mid h_t) > \varepsilon\}$$
. Suppose

- $\overline{D}_T = \{D_1(a_1), D_2(a_2), \dots, D_T(a_T)\}$ are flip interventions and
- the NPSEM and strong SR hold.

Then,

$$\mathbb{E}\left\{Y(\overline{D}_{T})\right\} = \underbrace{\sum_{\overline{b}_{T} \in \{0,1\}^{T}} \mathbb{E}\left\{\mathbb{E}\left(Y \mid \overline{A}_{T} = \overline{b}_{T}, \ \overline{X}_{T}\right) \prod_{t=1}^{T} Q_{t}\left(b_{t} \mid \overline{b}_{t-1}, \overline{X}_{t}\right)\right\}}_{\mathbb{E}\left\{Y \prod_{t=1}^{T} \frac{Q_{t}(A_{t} \mid H_{t})}{\mathbb{P}(A_{t} \mid H_{t})}\right]\right\}}$$

where

а

$$egin{aligned} & Q_t(a_t \mid h_t) = I_t(a_t; h_t) + ig\{1 - I_t(a_t; h_t)ig\} \mathbb{P}(A_t = a_t \mid h_t) \ & ext{nd} \ & Q_t(1 - a_t \mid h_t) = 1 - Q_t(a_t \mid h_t). \end{aligned}$$

9 / 16

Not necessarily true that
$$\mathbb{E}\{Y(\overline{D}_T) - Y(\overline{D}_T')\}$$
 isolates
 $\psi = \mathbb{E}\Big[\{Y(\overline{a}_T) - Y(\overline{a}_T')\}\mathbb{1}(\text{could take both } \overline{a}_T \text{ and } \overline{a}_T')\Big].$
Why? because \overline{D}_t affects $X_{t+1}(\overline{D}_t), A_{t+1}(\overline{D}_t)$

Theorem: Other flip interventions $\overline{D}_{\mathcal{T}}$ and $\overline{D}'_{\mathcal{T}}$ yield $\mathbb{E}\{Y(\overline{D}_{\mathcal{T}}) - Y(\overline{D}'_{\mathcal{T}})\} = \psi$. However, they have two properties:

- They depend on cross-world propensity scores: trim supposing non-zero propensity score under $D_1 = 1$ and $D_1 = 0$ non-falsifiable
- 2 They depend on future propensity scores: trim at t = 1 supposing non-zero propensity scores at t = 2

Not necessarily true that $\mathbb{E}\{Y(\overline{D}_T) - Y(\overline{D}'_T)\}$ isolates $\psi = \mathbb{E}\Big[\{Y(\overline{a}_T) - Y(\overline{a}'_T)\}\mathbb{1}(\text{could take both } \overline{a}_T \text{ and } \overline{a}'_T)\Big].$ Why? because \overline{D}_t affects $X_{t+1}(\overline{D}_t), A_{t+1}(\overline{D}_t)$ However, ψ is a bad target!

Theorem: Other flip interventions $\overline{D}_{\mathcal{T}}$ and $\overline{D}'_{\mathcal{T}}$ yield $\mathbb{E}\{Y(\overline{D}_{\mathcal{T}}) - Y(\overline{D}'_{\mathcal{T}})\} = \psi$. However, they have two properties:

- They depend on cross-world propensity scores: trim supposing non-zero propensity score under $D_1 = 1$ and $D_1 = 0$ non-falsifiable
- 2 They depend on future propensity scores: trim at t = 1 supposing non-zero propensity scores at t = 2

Not necessarily true that $\mathbb{E}\{Y(\overline{D}_{T}) - Y(\overline{D}'_{T})\}$ isolates $\psi = \mathbb{E}\Big[\{Y(\overline{a}_{T}) - Y(\overline{a}'_{T})\}\mathbb{1}(\text{could take both } \overline{a}_{T} \text{ and } \overline{a}'_{T})\Big].$ Why? because \overline{D}_{t} affects $X_{t+1}(\overline{D}_{t}), A_{t+1}(\overline{D}_{t})$ However, ψ is a bad target!

Theorem: Other flip interventions $\overline{D}_{\mathcal{T}}$ and $\overline{D}'_{\mathcal{T}}$ yield $\mathbb{E}\{Y(\overline{D}_{\mathcal{T}}) - Y(\overline{D}'_{\mathcal{T}})\} = \psi$. However, they have two properties:

- They depend on cross-world propensity scores: trim supposing non-zero propensity score under $D_1 = 1$ and $D_1 = 0$ non-falsifiable
- 2 They depend on future propensity scores: trim at t = 1 supposing non-zero propensity scores at t = 2

Not necessarily true that
$$\mathbb{E}\{Y(\overline{D}_{T}) - Y(\overline{D}'_{T})\}$$
 isolates
 $\psi = \mathbb{E}\Big[\{Y(\overline{a}_{T}) - Y(\overline{a}'_{T})\}\mathbb{1}(\text{could take both } \overline{a}_{T} \text{ and } \overline{a}'_{T})\Big].$
Why? because \overline{D}_{t} affects $X_{t+1}(\overline{D}_{t}), A_{t+1}(\overline{D}_{t})$
However, ψ is a bad target!

Theorem: Other flip interventions $\overline{D}_{\mathcal{T}}$ and $\overline{D}'_{\mathcal{T}}$ yield $\mathbb{E}\{Y(\overline{D}_{\mathcal{T}}) - Y(\overline{D}'_{\mathcal{T}})\} = \psi$. However, they have two properties:

They depend on cross-world propensity scores: trim supposing non-zero propensity score under $D_1 = 1$ and $D_1 = 0$ non-falsifiable

They depend on future propensity scores: trim at t = 1 supposing non-zero propensity scores at t = 2

Not necessarily true that
$$\mathbb{E}\{Y(\overline{D}_{T}) - Y(\overline{D}'_{T})\}$$
 isolates
 $\psi = \mathbb{E}\Big[\{Y(\overline{a}_{T}) - Y(\overline{a}'_{T})\}\mathbb{1}(\text{could take both } \overline{a}_{T} \text{ and } \overline{a}'_{T})\Big].$
Why? because \overline{D}_{t} affects $X_{t+1}(\overline{D}_{t}), A_{t+1}(\overline{D}_{t})$
However, ψ is a bad target!

Theorem: Other flip interventions $\overline{D}_{\mathcal{T}}$ and $\overline{D}'_{\mathcal{T}}$ yield $\mathbb{E}\{Y(\overline{D}_{\mathcal{T}}) - Y(\overline{D}'_{\mathcal{T}})\} = \psi$. However, they have two properties:

They depend on future propensity scores: trim at t = 1 supposing non-zero propensity scores at t = 2

Not necessarily true that
$$\mathbb{E}\{Y(\overline{D}_{T}) - Y(\overline{D}'_{T})\}$$
 isolates
 $\psi = \mathbb{E}\Big[\{Y(\overline{a}_{T}) - Y(\overline{a}'_{T})\}\mathbb{1}(\text{could take both } \overline{a}_{T} \text{ and } \overline{a}'_{T})\Big].$
Why? because \overline{D}_{t} affects $X_{t+1}(\overline{D}_{t}), A_{t+1}(\overline{D}_{t})$
However, ψ is a bad target!

Theorem: Other flip interventions \overline{D}_T and \overline{D}'_T yield $\mathbb{E}\{Y(\overline{D}_T) Y(\overline{D}'_{\tau}) = \psi$. However, they have two properties:

2 They depend on future propensity scores: trim at t = 1supposing non-zero propensity scores at t = 2

Smooth trimming with S-flip interventions

Everything we've done so far can be generalized to smooth trimming!

Why: flip effects inherit $\hat{\pi}$ convergence rate ML estimator \implies slower-than- \sqrt{n} convergence Smooth trimmed effects: \sqrt{n} -convergence w/ ML estimators

How: replace $\mathbb{1}(\cdot)$ by $S(\cdot)$: $\mathbb{E}\left[\{Y(1) - Y(0)\}S(X)\right]$

Everything we've done so far can be generalized to smooth trimming!

Why: flip effects inherit $\hat{\pi}$ convergence rate ML estimator \implies slower-than- \sqrt{n} convergence Smooth trimmed effects: \sqrt{n} -convergence w/ ML estimators

How: replace $\mathbb{1}(\cdot)$ by $S(\cdot)$: $\mathbb{E}\left[\{Y(1) - Y(0)\}S(X)\right]$

Everything we've done so far can be generalized to smooth trimming!

Why: flip effects inherit $\hat{\pi}$ convergence rate ML estimator \implies slower-than- \sqrt{n} convergence Smooth trimmed effects: \sqrt{n} -convergence w/ ML estimators

How: replace
$$\mathbb{1}(\cdot)$$
 by $S(\cdot)$: $\mathbb{E}\Big[\{Y(1) - Y(0)\}S(X)\Big]$

Everything we've done so far can be generalized to smooth trimming!

Why: flip effects inherit $\hat{\pi}$ convergence rate ML estimator \implies slower-than- \sqrt{n} convergence Smooth trimmed effects: \sqrt{n} -convergence w/ ML estimators

How: replace
$$\mathbb{1}(\cdot)$$
 by $S(\cdot)$: $\mathbb{E}\Big[\{Y(1) - Y(0)\}S(X)\Big]$

- $\overline{a}_T \in \{0,1\}^T$ is the target regime
- $S_t^c \equiv S_t^c(a_t; h_t) = s \left[\mathbb{P} \{ A_t(\overline{D}_{t-1}) = a_t \mid H_t(\overline{D}_{t-1}) = h_t \}, k, \varepsilon \right]$ is smooth trimming indicator

S-flip intervention at time t targeting a_t is

$$D_t(a_t) = \begin{cases} A_t(\overline{D}_{t-1}), & \text{if } A_t(\overline{D}_{t-1}) = a_t, \\ \mathbb{1}(V_t > S_t^c)a_t + \mathbb{1}(V_t \le S_t^c)A_t(\overline{D}_{t-1}), & \text{otherwise,} \end{cases}$$

and $V_1,\ldots,V_T\stackrel{\it iid}{\sim}{
m Uniform}(0,1)$ and $V_t\perp\!\!\!\perp Z$ for all $t\leq T$.

At time t, if the natural value of treatment is already a_t , **do nothing**; otherwise, "flip" the subject to a_t with probability S_t^c .

• $\overline{a}_T \in \{0,1\}^T$ is the target regime

► $S_t^c \equiv S_t^c(a_t; h_t) = s[\mathbb{P}\{A_t(\overline{D}_{t-1}) = a_t \mid H_t(\overline{D}_{t-1}) = h_t\}, k, \varepsilon]$ is smooth trimming indicator

S-flip intervention at time *t* targeting *a*_t is

$$D_t(a_t) = \begin{cases} A_t(\overline{D}_{t-1}), & \text{if } A_t(\overline{D}_{t-1}) = a_t, \\ \mathbb{1}(V_t > S_t^c)a_t + \mathbb{1}(V_t \le S_t^c)A_t(\overline{D}_{t-1}), & \text{otherwise,} \end{cases}$$

and $V_1, \ldots, V_T \stackrel{iid}{\sim} \text{Uniform}(0,1)$ and $V_t \perp\!\!\!\perp Z$ for all $t \leq T$.

At time t, if the natural value of treatment is already a_t , **do nothing**; otherwise, "flip" the subject to a_t with probability S_t^c .

• $\overline{a}_T \in \{0,1\}^T$ is the target regime

► $S_t^c \equiv S_t^c(a_t; h_t) = s[\mathbb{P}\{A_t(\overline{D}_{t-1}) = a_t \mid H_t(\overline{D}_{t-1}) = h_t\}, k, \varepsilon]$ is smooth trimming indicator

S-flip intervention at time *t* targeting *a*_t is

$$D_t(a_t) = \begin{cases} A_t(\overline{D}_{t-1}), & \text{if } A_t(\overline{D}_{t-1}) = a_t, \\ \mathbb{1}(V_t > S_t^c)a_t + \mathbb{1}(V_t \le S_t^c)A_t(\overline{D}_{t-1}), & \text{otherwise,} \end{cases}$$

and $V_1, \ldots, V_T \stackrel{iid}{\sim} \mathsf{Uniform}(0,1)$ and $V_t \perp\!\!\!\perp Z$ for all $t \leq T$.

At time *t*, if the natural value of treatment is already a_t , **do nothing**; otherwise, "flip" the subject to a_t with probability S_t^c .

• $\overline{a}_T \in \{0,1\}^T$ is the target regime

►
$$S_t^c \equiv S_t^c(a_t; h_t) = s[\mathbb{P}\{A_t(\overline{D}_{t-1}) = a_t \mid H_t(\overline{D}_{t-1}) = h_t\}, k, \varepsilon]$$
 is smooth trimming indicator

S-flip intervention at time t targeting a_t is

$$D_t(a_t) = \begin{cases} A_t(\overline{D}_{t-1}), & \text{if } A_t(\overline{D}_{t-1}) = a_t, \\ \mathbb{1}(V_t > S_t^c)a_t + \mathbb{1}(V_t \le S_t^c)A_t(\overline{D}_{t-1}), & \text{otherwise,} \end{cases}$$

and $V_1, \ldots, V_T \stackrel{iid}{\sim} \mathsf{Uniform}(0,1)$ and $V_t \perp\!\!\!\perp Z$ for all $t \leq T$.

At time *t*, if the natural value of treatment is already a_t , **do nothing**; otherwise, "flip" the subject to a_t with probability S_t^c .

Theorem: S-flip effect identification

Let
$$S_t(a_t; h_t) = s\{\mathbb{P}(A_t = a_t \mid h_t), \varepsilon, k\}$$
. Suppose

• $\overline{D}_T = \{D_1(a_1), D_2(a_2), \dots, D_T(a_T)\}$ are S-flip interventions,

•
$$s(0) = 0$$
, and

the NPSEM and strong SR hold.

Then,

$$\mathbb{E}\left\{Y(\overline{D}_{T})\right\} = \sum_{\overline{b}_{T} \in \{0,1\}^{T}} \mathbb{E}\left\{\mathbb{E}\left(Y \mid \overline{A}_{T} = \overline{b}_{T}, \ \overline{X}_{T}\right) \prod_{t=1}^{T} Q_{t}\left(b_{t} \mid \overline{b}_{t-1}, \overline{X}_{t}\right)\right\},\$$
$$= \mathbb{E}\left[Y \prod_{t=1}^{T} \frac{Q_{t}(A_{t} \mid H_{t})}{\mathbb{P}(A_{t} \mid H_{t})}\right],$$

where

$$Q_t(a_t \mid h_t) = S_t(a_t; h_t) + \{1 - S_t(a_t; h_t)\}\mathbb{P}(A_t = a_t \mid h_t)$$

 $(S_t(a_t; h_t) \approx 1 \implies Q_t(a_t \mid h_t) \approx 1)$

Theorem: S-flip effect identification

Let
$$S_t(a_t; h_t) = s\{\mathbb{P}(A_t = a_t \mid h_t), \varepsilon, k\}$$
. Suppose

• $\overline{D}_T = \{D_1(a_1), D_2(a_2), \dots, D_T(a_T)\}$ are S-flip interventions,

•
$$s(0) = 0$$
, and

the NPSEM and strong SR hold.

Then,

$$\mathbb{E}\left\{Y(\overline{D}_{T})\right\} = \sum_{\overline{b}_{T} \in \{0,1\}^{T}} \mathbb{E}\left\{\mathbb{E}\left(Y \mid \overline{A}_{T} = \overline{b}_{T}, \ \overline{X}_{T}\right) \prod_{t=1}^{T} Q_{t}\left(b_{t} \mid \overline{b}_{t-1}, \overline{X}_{t}\right)\right\},\$$
$$= \mathbb{E}\left[Y \prod_{t=1}^{T} \frac{Q_{t}(A_{t} \mid H_{t})}{\mathbb{P}(A_{t} \mid H_{t})}\right],$$

where

$$Q_t(a_t \mid h_t) = S_t(a_t; h_t) + \{1 - S_t(a_t; h_t)\}\mathbb{P}(A_t = a_t \mid h_t)$$

 $(S_t(a_t; h_t) \approx 1 \implies Q_t(a_t \mid h_t) \approx 1)$

Theorem: S-flip effect identification

Let
$$S_t(a_t; h_t) = s\{\mathbb{P}(A_t = a_t \mid h_t), \varepsilon, k\}$$
. Suppose

• $\overline{D}_T = \{D_1(a_1), D_2(a_2), \dots, D_T(a_T)\}$ are S-flip interventions,

•
$$s(0) = 0$$
, and

the NPSEM and strong SR hold.

Then,

$$\mathbb{E}\left\{Y(\overline{D}_{T})\right\} = \sum_{\overline{b}_{T} \in \{0,1\}^{T}} \mathbb{E}\left\{\mathbb{E}\left(Y \mid \overline{A}_{T} = \overline{b}_{T}, \ \overline{X}_{T}\right) \prod_{t=1}^{T} Q_{t}\left(b_{t} \mid \overline{b}_{t-1}, \overline{X}_{t}\right)\right\},\$$
$$= \mathbb{E}\left[Y \prod_{t=1}^{T} \frac{Q_{t}(A_{t} \mid H_{t})}{\mathbb{P}(A_{t} \mid H_{t})}\right],$$

where

$$Q_t(a_t \mid h_t) = S_t(a_t; h_t) + \big\{1 - S_t(a_t; h_t)\big\}\mathbb{P}(A_t = a_t \mid h_t)$$

 $(S_t(a_t; h_t) \approx 1 \implies Q_t(a_t \mid h_t) \approx 1)$

Estimation

(in two slides)

Estimation of S-flip effects

S-flip effects are pathwise differentiable \implies efficient influence function (EIF)-based estimators

We derive the new EIF (plug-in plus weighted residuals)

Inspires two one-step estimators:

- Multiply robust-style
- Sequentially doubly robust-style (debias pseudo-outcome in multiply robust-style estimator)

We derive the new EIF (plug-in plus weighted residuals)

Inspires two one-step estimators:

- Multiply robust-style
- Sequentially doubly robust-style (debias pseudo-outcome in multiply robust-style estimator)

We derive the new EIF (plug-in plus weighted residuals)

Inspires two one-step estimators:

- Multiply robust-style
- Sequentially doubly robust-style (debias pseudo-outcome in multiply robust-style estimator)

We derive the new EIF (plug-in plus weighted residuals)

Inspires two one-step estimators:

- Multiply robust-style
- Sequentially doubly robust-style (debias pseudo-outcome in multiply robust-style estimator)

We derive the new EIF (plug-in plus weighted residuals)

Inspires two one-step estimators:

- Multiply robust-style
- Sequentially doubly robust-style (debias pseudo-outcome in multiply robust-style estimator)

We derive the new EIF (plug-in plus weighted residuals)

Inspires two one-step estimators:

- Multiply robust-style
- Sequentially doubly robust-style (debias pseudo-outcome in multiply robust-style estimator)

Two new results for multiply robust-style estimator:

- Observe that bias is minimum of two errors
 Díaz et al. [2023] & Kennedy [2019]: unroll into future and past
 → Hence, 2(T + 1) multiply robust-style bound
- Tighten bias bound from IPSI-style result [Kennedy, 2019]

Sequentially DR-style result is **first-of-its-kind** where Q_t depends on unknown propensity score

Theorem, informal: Let ψ denote S-flip effect, π_t prop. score at t, \widetilde{m}_t denote seq. reg. at t with estimated pseudo-outcome. Then,

$$\left|\mathbb{E}\left(\widehat{\psi}_{sdr}-\psi\right)\right| \lesssim \sum_{t=1}^{T} \|\widehat{\pi}_t - \pi_t\| \Big(\|\widehat{m}_t - \widetilde{m}_t\| + \|\widehat{\pi}_t - \pi_t\|\Big).$$

ML conv. rates

Two new results for multiply robust-style estimator:

- Observe that bias is minimum of two errors
 Díaz et al. [2023] & Kennedy [2019]: unroll into future and past
 → Hence, 2(T + 1) multiply robust-style bound
- Tighten bias bound from IPSI-style result [Kennedy, 2019]

Sequentially DR-style result is **first-of-its-kind** where Q_t depends on unknown propensity score

Theorem, informal: Let ψ denote S-flip effect, π_t prop. score at t, \tilde{m}_t denote seq. reg. at t with estimated pseudo-outcome. Then,

$$\left|\mathbb{E}\left(\widehat{\psi}_{sdr}-\psi\right)\right| \lesssim \sum_{t=1}^{T} \|\widehat{\pi}_t - \pi_t\| \Big(\|\widehat{m}_t - \widetilde{m}_t\| + \|\widehat{\pi}_t - \pi_t\|\Big).$$

ML conv. rates

Two new results for multiply robust-style estimator:

Observe that bias is minimum of two errors
 Díaz et al. [2023] & Kennedy [2019]: unroll into future and past
 → Hence, 2(T + 1) multiply robust-style bound

Tighten bias bound from IPSI-style result [Kennedy, 2019]

Sequentially DR-style result is **first-of-its-kind** where Q_t depends on unknown propensity score

Theorem, informal: Let ψ denote S-flip effect, π_t prop. score at t, \widetilde{m}_t denote seq. reg. at t with estimated pseudo-outcome. Then,

$$\left|\mathbb{E}\left(\widehat{\psi}_{sdr}-\psi\right)\right| \lesssim \sum_{t=1}^{T} \|\widehat{\pi}_t - \pi_t\| \Big(\|\widehat{m}_t - \widetilde{m}_t\| + \|\widehat{\pi}_t - \pi_t\|\Big).$$

ML conv. rates

Two new results for multiply robust-style estimator:

- Observe that bias is minimum of two errors
 Díaz et al. [2023] & Kennedy [2019]: unroll into future and past
 → Hence, 2(T + 1) multiply robust-style bound
- Tighten bias bound from IPSI-style result [Kennedy, 2019]

Sequentially DR-style result is **first-of-its-kind** where Q_t depends on unknown propensity score

Theorem, informal: Let ψ denote S-flip effect, π_t prop. score at t, \widetilde{m}_t denote seq. reg. at t with estimated pseudo-outcome. Then,

$$\left|\mathbb{E}\left(\widehat{\psi}_{sdr}-\psi\right)\right| \lesssim \sum_{t=1}^{T} \|\widehat{\pi}_t - \pi_t\| \Big(\|\widehat{m}_t - \widetilde{m}_t\| + \|\widehat{\pi}_t - \pi_t\|\Big).$$

ML conv. rates

Two new results for multiply robust-style estimator:

- Observe that bias is minimum of two errors
 Díaz et al. [2023] & Kennedy [2019]: unroll into future and past
 → Hence, 2(T + 1) multiply robust-style bound
- Ighten bias bound from IPSI-style result [Kennedy, 2019]

Sequentially DR-style result is **first-of-its-kind** where Q_t depends on unknown propensity score

Theorem, informal: Let ψ denote S-flip effect, π_t prop. score at t, \tilde{m}_t denote seq. reg. at t with estimated pseudo-outcome. Then,

$$\left|\mathbb{E}\left(\widehat{\psi}_{sdr}-\psi\right)\right| \lesssim \sum_{t=1}^{T} \|\widehat{\pi}_t - \pi_t\| \Big(\|\widehat{m}_t - \widetilde{m}_t\| + \|\widehat{\pi}_t - \pi_t\|\Big).$$

ML conv. rates

Two new results for multiply robust-style estimator:

- Observe that bias is minimum of two errors
 Díaz et al. [2023] & Kennedy [2019]: unroll into future and past
 → Hence, 2(T + 1) multiply robust-style bound
- Ighten bias bound from IPSI-style result [Kennedy, 2019]
- Sequentially DR-style result is **first-of-its-kind** where Q_t depends on unknown propensity score

Theorem, informal: Let ψ denote S-flip effect, π_t prop. score at t, \tilde{m}_t denote seq. reg. at t with estimated pseudo-outcome. Then,

$$\left| \mathbb{E}\left(\widehat{\psi}_{sdr} - \psi \right) \right| \lesssim \sum_{t=1}^{T} \|\widehat{\pi}_t - \pi_t\| \Big(\|\widehat{m}_t - \widetilde{m}_t\| + \|\widehat{\pi}_t - \pi_t\| \Big).$$

ML conv. rates
Bias bounds

Two new results for multiply robust-style estimator:

- Observe that bias is minimum of two errors
 Díaz et al. [2023] & Kennedy [2019]: unroll into future and past
 → Hence, 2(T + 1) multiply robust-style bound
- Ighten bias bound from IPSI-style result [Kennedy, 2019]

Sequentially DR-style result is **first-of-its-kind** where Q_t depends on unknown propensity score

Theorem, informal: Let ψ denote S-flip effect, π_t prop. score at t, \tilde{m}_t denote seq. reg. at t with estimated pseudo-outcome. Then,

$$\left|\mathbb{E}\left(\widehat{\psi}_{\mathsf{sdr}}-\psi\right)\right| \lesssim \sum_{t=1}^{T} \|\widehat{\pi}_t - \pi_t\| \Big(\|\widehat{m}_t - \widetilde{m}_t\| + \|\widehat{\pi}_t - \pi_t\|\Big).$$

 $\underbrace{\|\widehat{\pi}_t - \pi_t\| = o_{\mathbb{P}}(n^{-1/4}) = \|\widehat{m}_t - \widetilde{m}_t\|}_{\text{totic normality}} \implies \sqrt{n} - \text{consistency \& asymptotic normality}$ 15

Thank you!

Recap:

 $\blacktriangleright T = 1:$

 $\begin{array}{l} \mbox{trimming} \equiv \mbox{flip interventions} \\ \mbox{smooth trimming} \equiv \mbox{S-flip ints} \end{array}$

- T > 1: not so simple.
 Flip/S-flip ints avoid positivity asmp and cross-world / future-dependence
- Efficient estimation of S-flip effects: (1) multiply robust and (2) sequentially doubly robust

Ongoing work:

 Data analysis (administrative censoring and censoring by death) hadera01@nyu.edu *Prelim draft:*

alecmcclean.github.io/
files/LSTTEs-short.pdf

16 / 16

- Iván Díaz, Nicholas Williams, Katherine L Hoffman, and Edward J Schenck. Nonparametric causal effects based on longitudinal modified treatment policies. *Journal of the American Statistical Association*, 118(542):846–857, 2023.
- Aksel KG Jensen, Theis Lange, Olav L Schjørring, and Maya L Petersen. Identification and responses to positivity violations in longitudinal studies: an illustration based on invasively mechanically ventilated icu patients. *Biostatistics & Epidemiology*, 8(1):e2347709, 2024.
- Edward H Kennedy. Nonparametric causal effects based on incremental propensity score interventions. *Journal of the American Statistical Association*, 114(526):645–656, 2019.
- Alexander W Levis, Edward H Kennedy, Alec McClean, Sivaraman Balakrishnan, and Larry Wasserman. Stochastic interventions, sensitivity analysis, and optimal transport. *arXiv preprint arXiv:2411.14285*, 2024.

Maya L Petersen, Kristin E Porter, Susan Gruber, Yue Wang, and Mark J Van Der Laan. Diagnosing and responding to violations in the positivity assumption. *Statistical methods in medical research*, 21(1):31–54, 2012.

Additional remarks

- Robustness to positivity violations ⇒ S-flips are alternative to IPSIs that target a specific regime
- Present the second s

$$D_t(a_t) = \mathbb{1}\Big[V_t \leq \mathbb{1}(a_t = 1)I_t^c + (1 - I_t^c)\mathbb{P}\{A_t(\overline{D}_{t-1}) = 1 \mid H_t(\overline{D}_{t-1})\}\Big]$$

- Can avoid practical issues we may not observe natural value of treatment
- Identification only requires standard sequential randomization
- Flip interventions inspired by maximally coupled policies Levis et al. [2024]