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Trimming with single timepoint data

{(Xi ,Ai ,Yi)}n
i=1

iid∼ P with Xi covariates, Ai ∈ {0, 1} binary
treatment and Yi ∈ R outcome.
Y (a) is potential outcome under treatment a.

Positivity violations: π(X ) = P(A = 1 | X ) ≈ 0 or ≈ 1.
E{Y (a)} not identified (π = 0) or hard-to-estimate (π ≈ 0)
Trimming: Change population to satisfy positivity

E
[{

Y (1)− Y (0)}1{ε < π(X ) < 1 − ε}
]

for ε ∈ [0, 0.5)

(related to cond. trimming: E{f (Z ) | E} = E{f (Z )1(E)}/P(E)) 1 / 16
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Trimming on non-baseline covariates is challenging
Data: (X1,A1,X2,A2,Y ).

Can we trim on propensity scores in the second timepoint?
(where we often have positivity violations!)
Traditional answer: no

...the [post-treatment] covariates responsible for positivity vio-
lations may themselves be affected by past treatment. Trim-
ming... amounts to conditioning on post-treatment covariates
and can thus introduce new bias. [Petersen et al., 2012, Sec-
tion 4.3] (also, see, e.g., Jensen et al. [2024, Section 6.3])

“...the [time-varying] covariates responsible for positivity violations may
themselves be affected by past treatment. Trimming... amounts to
conditioning on post-treatment covariates and can thus introduce new
bias.”[Petersen et al., 2012, Section 4.3]
(also, see, e.g., Jensen et al. [2024, Section 6.3])
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Trimming is a dynamic “flip” intervention
Dynamic stochastic interventions:
D = d(A,X ) adapts so E{Y (D)} IDable and estimable

I Modified treatment policies [Díaz et al., 2023]
I Incremental propensity score interventions [Kennedy, 2019]

Proposition

Let 1(X ) ≡ 1{ε < π(X ) < 1 − ε} and

D(a) =
{

A if A = a
1(X )a +

{
1 − 1(X )

}
A if A 6= a.

Then, if {Y (1),Y (0)} ⊥⊥ A | X,

E [Y {D(1)} − Y {D(0)}] = E [{Y (1)− Y (0)}1{ε < π(X ) < 1 − ε}]

D(a) is a flip intervention:
If A = a, do not intervene; o/w, flip to a if 1(X ) = 1.
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Longitudinal setup



Longitudinal data
{Zi}n

i=1
iid∼ P ∈ P where Z = (X1,A1,X2,A2, . . . ,XT ,AT ,Y )

Xt ∈ Rd : time-varying covariates
At ∈ {0, 1}: time-varying binary treatment
Y ∈ R: ultimate outcome of interest
History of Ot at t: Ot = (O1, . . . ,Ot)
Future of Ot from t: Ot = (Ot , . . . ,OT )
Ht = (X t ,At−1): covariate and treatment history at t

NPSEM assumption: there are {fX ,t , fA,t}T
t=1 and fY such that

Xt = fX ,t(At−1,Ht−1,UX ,t),

At = fA,t(Ht ,UA,t), and
Y = fY (AT ,HT ,UY ).

where
{

UX ,t ,UA,t ,UY
}

are exogeneous variables 4 / 16
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Causal assumptions
NPSEM embeds consistency

We will avoid positivity by trimming/flipping
(e.g. ∃ δ > 0 s.t. P{δ < P(At = 1 | Ht) < 1 − δ} = 1.)

Sequential randomization:
1 Standard: UA,t ⊥⊥ (UX ,t+1,UY ) | Ht for all t ≤ T
2 Strong: UA,t ⊥⊥ (UX ,t+1,UA,t+1,UY ) | Ht

Standard SR: common causes of At and future covariates and
outcome measured. Typical in literature.
Strong SR: common causes At and future covariates and
outcome and treatments measured. Allows for ID when
intervention depends on natural value of treatment.
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Counterfactual variables under Dt−1

Dt−1 generates counterfactual variables at time t:
I Xt(Dt−1) = fX ,t(Dt−1,Ht−1(Dt−2),UX ,t)

“Natural covariate value”

I Ht(Dt−1) = (Dt−1,X t(Dt−1))
“Natural covariate and treatment history”

I At(Dt−1) = fA,t(Ht(Dt−1),UA,t)
“Natural value of treatment”
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Intervention Dt and potential outcomes DT

Dt can be a function of At(Dt−1),Ht(Dt−1).

Ultimately, replace AT with DT :
I Y (DT ) = fY (DT ,HT (DT−1),UY )

“Counterfactual outcomes under DT ”
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Longitudinal trimming with flip
interventions



Longitudinal flip interventions

I aT ∈ {0, 1}T is the target regime

I Ic
t ≡ Ic

t (at ; ht) = 1
[
P{At(Dt−1) = at | Ht(Dt−1) = ht} > ε

]
is

trimming indicator

Flip intervention at time t targeting at is

Dt(at) =

{
At(Dt−1), if At(Dt−1) = at ,

Ic
t at +

(
1 − Ic

t
)
At(Dt−1), otherwise,

At t, if the natural value of treatment is already at, do
nothing; otherwise, “flip” the subject to at if their natural
history lies in the trimmed set (determined by Ic

t ).

8 / 16
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Theorem: identification
Let It(at ; ht) = 1{P(At = at | ht) > ε}. Suppose

I DT = {D1(a1),D2(a2), . . . ,DT (aT )} are flip interventions and
I the NPSEM and strong SR hold.

Then,

E
{

Y (DT )
}
=

extended g-formula︷ ︸︸ ︷∑
bT∈{0,1}T

E

{
E
(
Y | AT = bT , XT

) T∏
t=1

Qt
(
bt | bt−1,X t

)}
,

= E

[
Y

T∏
t=1

Qt(At | Ht)

P(At | Ht)

]}
IPW,

where

Qt(at | ht) = It(at ; ht) +
{

1 − It(at ; ht)
}
P(At = at | ht)

and Qt(1 − at | ht) = 1 − Qt(at | ht).
9 / 16
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) T∏
t=1

Qt
(
bt | bt−1,X t

)}
,

= E

[
Y

T∏
t=1

Qt(At | Ht)

P(At | Ht)

]}
IPW,

where

Qt(at | ht) = It(at ; ht) +
{

1 − It(at ; ht)
}
P(At = at | ht)

and Qt(1 − at | ht) = 1 − Qt(at | ht).
9 / 16



We are trimming, but we can’t(/shouldn’t) aim for
“trimmed” effects

Not necessarily true that E{Y (DT )− Y (D′
T )} isolates

ψ = E
[{

Y (aT )− Y (a′
T )
}

1
(
could take both aT and a′

T
)]
.

Why? because Dt affects Xt+1(Dt),At+1(Dt)
However, ψ is a bad target!

Theorem: Other flip interventions DT and D′
T yield E{Y (DT ) −

Y (D′
T )} = ψ. However, they have two properties:

1 They depend on cross-world propensity scores: trim supposing
non-zero propensity score under D1 = 1 and D1 = 0
non-falsifiable

2 They depend on future propensity scores: trim at t = 1
supposing non-zero propensity scores at t = 2

(this justifies the caution typically advised)
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Smooth trimming with S-flip
interventions



Smooth trimming
Everything we’ve done so far can be generalized to smooth
trimming!

Why: flip effects inherit π̂ convergence rate
ML estimator =⇒ slower-than-

√
n convergence

Smooth trimmed effects:
√

n-convergence w/ ML estimators

How: replace 1(·) by S(·): E
[
{Y (1)− Y (0)}S(X )

]
Examples:

1 1(x > 0) →
s(x ; k) = 1 − exp(−kx)

2 1(x > ε) →
s(x ; k, ε) =

x
x+exp{−k(x−ε)}
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Smooth-flip (S-flip) interventions

I aT ∈ {0, 1}T is the target regime

I Sc
t ≡ Sc

t (at ; ht) = s
[
P{At(Dt−1) = at | Ht(Dt−1) = ht}, k, ε

]
is

smooth trimming indicator

S-flip intervention at time t targeting at is

Dt(at) =

{
At(Dt−1), if At(Dt−1) = at ,

1(Vt > Sc
t )at + 1(Vt ≤ Sc

t )At(Dt−1), otherwise,

and V1, . . . ,VT
iid∼ Uniform(0, 1) and Vt ⊥⊥ Z for all t ≤ T .

At time t, if the natural value of treatment is already at , do nothing;
otherwise, “flip” the subject to at with probability Sc

t .

s(x) = 1 − exp(−50x) approximates 1(x > 0) :
s(0) = 0, s(0.01) = 0.39, s(0.1) = 0.99

12 / 16
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Theorem: S-flip effect identification
Let St(at ; ht) = s{P(At = at | ht), ε, k}. Suppose

I DT = {D1(a1),D2(a2), . . . ,DT (aT )} are S-flip interventions,
I s(0) = 0, and
I the NPSEM and strong SR hold.

Then,

E
{

Y (DT )
}
=

∑
bT∈{0,1}T

E

{
E
(
Y | AT = bT , XT

) T∏
t=1

Qt
(
bt | bt−1,X t

)}
,

= E

[
Y

T∏
t=1

Qt(At | Ht)

P(At | Ht)

]
,

where

Qt(at | ht) = St(at ; ht) +
{

1 − St(at ; ht)
}
P(At = at | ht)

(St(at ; ht) ≈ 1 =⇒ Qt(at | ht) ≈ 1)
13 / 16
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Estimation
(in two slides)



Estimation of S-flip effects

S-flip effects are pathwise differentiable =⇒ efficient
influence function (EIF)-based estimators

We derive the new EIF (plug-in plus weighted residuals)

Inspires two one-step estimators:
1 Multiply robust-style
2 Sequentially doubly robust-style (debias pseudo-outcome

in multiply robust-style estimator)

We derive bias bounds, which imply weak convergence for
S-flip estimator under nonparametric conditions on nuisance
functions
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Bias bounds
Two new results for multiply robust-style estimator:

1 Observe that bias is minimum of two errors
Díaz et al. [2023] & Kennedy [2019]: unroll into future and past
→ Hence, 2(T + 1) multiply robust-style bound

2 Tighten bias bound from IPSI-style result [Kennedy, 2019]
Sequentially DR-style result is first-of-its-kind where Qt
depends on unknown propensity score

Theorem, informal: Let ψ denote S-flip effect, πt prop. score at t,
m̃t denote seq. reg. at t with estimated pseudo-outcome. Then,

∣∣∣E(
ψ̂sdr − ψ

)∣∣∣ . T∑
t=1

‖π̂t − πt‖
(
‖m̂t − m̃t‖+ ‖π̂t − πt‖

)
.

ML conv. rates︷ ︸︸ ︷
‖π̂t − πt‖ = oP(n−1/4) = ‖m̂t − m̃t‖ =⇒

√
n−consistency & asymp-

totic normality 15 / 16
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Thank you!

Recap:
I T = 1:

trimming ≡ flip interventions
smooth trimming ≡ S-flip ints

I T > 1: not so simple.
Flip/S-flip ints avoid positivity
asmp and cross-world /
future-dependence

I Efficient estimation of S-flip
effects: (1) multiply robust and
(2) sequentially doubly robust

Ongoing work:
I Data analysis (administrative

censoring and censoring by
death)

hadera01@nyu.edu
Prelim draft:

alecmcclean.github.io/
files/LSTTEs-short.pdf
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Additional remarks

1 Robustness to positivity violations =⇒ S-flips are
alternative to IPSIs that target a specific regime

2 Relax dependence on natural value of treatment:

Dt(at) = 1
[
Vt ≤ 1(at = 1)Ic

t +
(
1−Ic

t
)
P{At(Dt−1) = 1 | Ht(Dt−1)}

]
I Can avoid practical issues — we may not observe

natural value of treatment
I Identification only requires standard sequential

randomization
3 Flip interventions inspired by maximally coupled

policies Levis et al. [2024]
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