MAIN IDEAS

* Doubly robust estimators with cross-fitting achieve favor-
able error guarantees, allowing for nonparametric nuisance
function estimation while attaining parametric efficiency.

However, with additional available structure, such as
Holder smoothness, we can construct even better estima-
tors, including higher-order and double cross-fit doubly ro-
bust (DCDR) estimators [Robins et al. 2008, 2009, Newey
and Robins, 2018, McGrath and Mukherjee, 2022].

e We construct DCDR estimators for the Expected Condi-
tional Covariance and prove, with progressively stronger
assumptions,

1. a structure-agnostic linear expansion,

2. adaptive minimal semiparametric efficiency,
3. minimax rate-optimality, and

4. slower-than-root-n inference.

SOME STRUCTURE —> FASTER RATES

With Holder(s) smooth nuisance functions:
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DATA, FUNCTIONAL, ASSUMPTIONS
Observe 3n iid observations Z; = {X;, 4;,Y;}2",, where

e X € R? are covariates,
e A€ {0,1}isabinary treatment, and
e Y € R 1is an outcome.

Expected Conditional Covariance (ECC):
wecc — E{COV(Aa Y ‘ X)}7

ECC appears in the numerator of variance-weighted ATE |Li
et al., 2011], measures causal influence |[Diaz, 2023], and is
used for conditional independence testing [Shah and Peters,
2020]. It is also the simplest mixed bias functional [Rotnitzky
et al., 2019].

Un-centered efficient influence function:
Pece = 1A = T(X)Y — p(X)}

Nuisance Functions:

e f(X) is the covariate density,
e 1(X)=P(A=1|X)is the propensity score
e u(X)=E(Y | X)isthe outcome regression

Smoothness: when relevant, we assume ©m € Holder(«a),
n € Holder(B), f(X) € Holder(a VvV ). Holder(s) smooth
functions are approximately s — 1 times differentiable with
s — 1" derivative Lipschitz.
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THE DCDR ESTIMATOR

1. Split the data into three folds of n observations
2. Train undersmoothed ;v and 7 on separate folds
3. Construct the DCDR estimator on the third fold:
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WHY DOUBLE SPLITTING + UNDERSMOOTHING

Training the nuisance functions on the same data intro-
duces a non-linearity bias, and splitting the training data
removes this bias

The single cross-fit estimator minimizes the nuisance func-
tion estimators’ errors rather than the ECC estimator’s error

Undersmoothing the nuisance function estimators mini-
mizes the bias of the DCDR estimator while averaging will
prevent high variance, minimizing DCDR estimator’s error

STRUCTURE-AGNOSTIC LINEAR EXPANSION
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BSO(ZZ-) = E{o(Z;) — ¢(Z;) | X, Training Data} is the

conditional bias of ¢, and p(-) is spectral radius.

® ||bx||||b.| is product of biases of 7™ and p.
e K| — ¢||* appears in usual analysis.

e p(X,) is new, but should be smaller than E||® — ¢||°.

Careful analysis of p(¥,,) shows
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General Applicability: these results apply with any nuisance
function estimators under very weak assumptions. The initial
linear expansion applies to all mixed bias functionals.

LINEAR SMOOTHERS

We consider three linear smoothers:

1. Local Polynomial Regression (LPR)
2. Orthonormal Series Regression (OSR)

3. “Covariate-density-adapted” Local Polynomial Regres-
sion (CDA-LPR)

CDA-LPR replaces estimated inverse sample design matrix
with true inverse covariate density, assuming this is known.
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Minimizing remainder implies undersmoothing is optimal!

MINIMAL SEMIPARAMETRIC EFFICIENCY

With Holder smooth 7 and p, and DCDR estimator
based on undersmoothed LPR with bandwidths scaling
as h,,, hx ~ n~1/%or OSR with regressor dimensions scal-
ing as k,,, kr ~ n, then

\/V{SOT(LZ)} (wn — ¢ecc) 2 N(O, 1) if # > d/4,

otherwise.
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Adaptivity: does not require knowledge of covariate density
or true smoothnesses of 7w and .
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MINIMAX RATE-OPTIMALITY

With Holder smooth 7 and u, known and smooth co-
variate density, and DCDR estimator based on CDA-LPR
with one bandwidth scaling such that the estimator is

=
consistent and the other scaling as n2e+26+4, then
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The DCDR estimator can be minimax rate-optimal

SLOWER-THAN-ROOT-N INFERENCE

With Holder smooth 7 and u, known and smooth co-
variate density, and DCDR estimator based on CDA-LPR

with one bandwidth scaling such that the estimator is
2+¢
consistent and the other scaling as n™ 22+25+d for ¢ > 0,

then

n ~
\/V{@(Z) | Training Data} (Un = Yece) ~» N(0,1)

A CLT is feasible in the non-/n regime.

(Proof inspired by Robins et al. 2015, Asymptotic Normality
of Quadratic Estimators)

SIMULATIONS

To test our results, we constructed datasets with X ~
Unif(0,1) and Holder smooth nuisance functions using the
lower-bound minimax construction (e.g., Tsybakov, 2009).

HOLDER SMOOTH FUNCTIONS
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SIMULATION TAKEAWAYS AND CONTACT INFO
e Single split estimator no longer satisties CLT for non-
smooth nuisance functions (s/d = 0.1)

e DCDR estimators with known or unknown covariate den-
sity satisty CLT for all smoothnesses

e Caveat: all estimators outperform theory because functions
are only approximately Holder smooth
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