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MAIN IDEAS
• Doubly robust estimators with cross-fitting achieve favor-

able error guarantees, allowing for nonparametric nuisance
function estimation while attaining parametric efficiency.

• However, with additional available structure, such as
Hölder smoothness, we can construct even better estima-
tors, including higher-order and double cross-fit doubly ro-
bust (DCDR) estimators [Robins et al. 2008, 2009, Newey
and Robins, 2018, McGrath and Mukherjee, 2022].

• We construct DCDR estimators for the Expected Condi-
tional Covariance and prove, with progressively stronger
assumptions,

1. a structure-agnostic linear expansion,
2. adaptive minimal semiparametric efficiency,
3. minimax rate-optimality, and
4. slower-than-root-n inference.

SOME STRUCTURE –> FASTER RATES
With Hölder(s) smooth nuisance functions:

DATA, FUNCTIONAL, ASSUMPTIONS

Observe 3n iid observations Zi = {Xi, Ai, Yi}3ni=1, where

• X ∈ Rd are covariates,
• A ∈ {0, 1} is a binary treatment, and
• Y ∈ R is an outcome.

Expected Conditional Covariance (ECC):

ψecc = E{cov(A, Y | X)},

ECC appears in the numerator of variance-weighted ATE [Li
et al., 2011], measures causal influence [Díaz, 2023], and is
used for conditional independence testing [Shah and Peters,
2020]. It is also the simplest mixed bias functional [Rotnitzky
et al., 2019].
Un-centered efficient influence function:

φecc = {A− π(X)}{Y − µ(X)}

Nuisance Functions:
• f(X) is the covariate density,
• π(X) = P(A = 1 | X) is the propensity score
• µ(X) = E(Y | X) is the outcome regression

Smoothness: when relevant, we assume π ∈ Hölder(α),
µ ∈ Hölder(β), f(X) ∈ Hölder(α ∨ β). Hölder(s) smooth
functions are approximately s − 1 times differentiable with
s− 1th derivative Lipschitz.

THE DCDR ESTIMATOR
1. Split the data into three folds of n observations
2. Train undersmoothed µ̂ and π̂ on separate folds
3. Construct the DCDR estimator on the third fold:

ψ̂n =
1

n

n∑
i=1

φ̂ecc(Zi) ≡
1

n

n∑
i=1

{A− π̂(Xi)}{Y − µ̂(Xi)}

WHY DOUBLE SPLITTING + UNDERSMOOTHING

• Training the nuisance functions on the same data intro-
duces a non-linearity bias, and splitting the training data
removes this bias

• The single cross-fit estimator minimizes the nuisance func-
tion estimators’ errors rather than the ECC estimator’s error

• Undersmoothing the nuisance function estimators mini-
mizes the bias of the DCDR estimator while averaging will
prevent high variance, minimizing DCDR estimator’s error

STRUCTURE-AGNOSTIC LINEAR EXPANSION

ψ̂n − ψecc = (Pn − P)φ(Z) (CLT Term)
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b̂φ(Zi) = E{φ̂(Zi) − φ(Zi) | Xi,Training Data} is the
conditional bias of φ̂, and ρ(·) is spectral radius.

• ∥bπ∥∥bµ∥ is product of biases of π̂ and µ̂.

• E∥φ̂− φ∥2 appears in usual analysis.

• ρ(Σn) is new, but should be smaller than E∥φ̂− φ∥2.

Careful analysis of ρ(Σn) shows

ρ(Σn)

n
≤ E∥φ̂− φ∥2

n

+
(
b
2

π + s2π

)
E
[

cov{µ̂(Xi), µ̂(Xj) | Xi, Xj}
]

+
(
b
2

µ + s2µ

)
︸ ︷︷ ︸

MSE of µ̂

E
[

cov{π̂(Xi), π̂(Xj) | Xi, Xj}︸ ︷︷ ︸
Covariance over training data

of independent predictions

]

General Applicability: these results apply with any nuisance
function estimators under very weak assumptions. The initial
linear expansion applies to all mixed bias functionals.

LINEAR SMOOTHERS

We consider three linear smoothers:
1. Local Polynomial Regression (LPR)
2. Orthonormal Series Regression (OSR)
3. “Covariate-density-adapted” Local Polynomial Regres-

sion (CDA-LPR)

CDA-LPR replaces estimated inverse sample design matrix
with true inverse covariate density, assuming this is known.

For all estimators, E
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]
≲ 1

n , so

ψ̂n − ψecc = (Pn − P)φ(Z) (CLT Term)
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Minimizing remainder implies undersmoothing is optimal!

MINIMAL SEMIPARAMETRIC EFFICIENCY

With Hölder smooth π and µ, and DCDR estimator
based on undersmoothed LPR with bandwidths scaling
as hµ, hπ ∼ n−1/d or OSR with regressor dimensions scal-
ing as kµ, kπ ∼ n, then

√
n

V{φ(Z)} (ψ̂n − ψecc)⇝ N(0, 1) if α+β
2 > d/4,

supPα,β
E∥ψ̂n − ψecc∥ ≲ n−

α+β
d otherwise.

Adaptivity: does not require knowledge of covariate density
or true smoothnesses of π and µ.

MINIMAX RATE-OPTIMALITY

With Hölder smooth π and µ, known and smooth co-
variate density, and DCDR estimator based on CDA-LPR
with one bandwidth scaling such that the estimator is
consistent and the other scaling as n

−2
2α+2β+d , then

sup
Pα,β

E∥ψ̂n − ψecc∥ ≲ n−(
2α+2β

2α+2β+d∧1/2)

The DCDR estimator can be minimax rate-optimal

SLOWER-THAN-ROOT-N INFERENCE

With Hölder smooth π and µ, known and smooth co-
variate density, and DCDR estimator based on CDA-LPR
with one bandwidth scaling such that the estimator is
consistent and the other scaling as n−

2+ε
2α+2β+d for ε > 0,

then√
n

V{φ̂(Z) | Training Data}
(ψ̂n − ψecc)⇝ N(0, 1)

A CLT is feasible in the non-
√
n regime.

(Proof inspired by Robins et al. 2015, Asymptotic Normality
of Quadratic Estimators)

SIMULATIONS
To test our results, we constructed datasets with X ∼
Unif(0, 1) and Hölder smooth nuisance functions using the
lower-bound minimax construction (e.g., Tsybakov, 2009).

HÖLDER SMOOTH FUNCTIONS

QQ PLOTS

COVERAGE AND POWER

SIMULATION TAKEAWAYS AND CONTACT INFO

• Single split estimator no longer satisfies CLT for non-
smooth nuisance functions (s/d = 0.1)

• DCDR estimators with known or unknown covariate den-
sity satisfy CLT for all smoothnesses

• Caveat: all estimators outperform theory because functions
are only approximately Hölder smooth
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